Evaluation of GPM IMERG rainfall estimates with WegenerNet gauge data in Austria

Sungmin O, G. Kirchengast, J. Fuchsberger, and U. Foelsche

Wegener Center for Climate and Global Change
Inst. for Geophysics, Astrophysics, and Meteorology / Inst. of Physics, University of Graz, Austria

J. Tan(1) and W. A. Petersen(2)
(1) Universities Space Research Association, and NASA Goddard Space Flight Center, and
(2) NASA Marshall Space Flight Center, Huntsville, Alabama, USA

The Wegener Center of the University of Graz in Austria is operating a high-resolution climate station network, **WegenerNet Feldbach (WEGN)**, at 1-km-scale resolution that serves as a long-term monitoring and validation facility for research and applications.

Alpine Forelands
- Feldbach region network in the Alpine foreland of southeastern Austria
- Cold winters, hot summers, occasionally strong winter storms, summer precipitation dominated by heavy rain from thunderstorms

Mountainous Terrain
- Johnsbachtal network in the alpine upper Styrian region of National Park Gesäuse
- A ‘sister network’ of WegenerNet Feldbach region for supporting studies in mountainous terrain
Station Locations and Measurements

- **153 stations** in ≈ 23 km x 18 km region (a station per ≈ 2 km²)
- altitudes from 250 to 520 m.s.l.
- automatic near-real-time observation and quality control of parameters such as temperature, humidity, precipitation, wind, pressure, radiation, complemented by soil measurements
- data available since Jan. 1, 2007; can be downloaded from the WegenerNet data portal, www.wegenernet.org

153 stations in the Feldbach network, two blue stars indicate Austrian national weather stations.
Station Types and Measured Parameters

<table>
<thead>
<tr>
<th>Base stations</th>
<th>Special base stations</th>
<th>Primary stations</th>
<th>Reference station</th>
</tr>
</thead>
<tbody>
<tr>
<td>127 stations</td>
<td>11 stations</td>
<td>11 stations</td>
<td>1 station</td>
</tr>
<tr>
<td>- Air temp., precipitation (tipping bucket, unheated), Air rel. humidity</td>
<td>- Air temp., precipitation (tipping bucket, unheated), Air rel. humidity</td>
<td>- Air temp., precipitation (tipping bucket, heated), Air rel. humidity</td>
<td>- Air temp., precipitation (heated), Air rel. humidity</td>
</tr>
<tr>
<td>- Soil parameters</td>
<td>5 stations</td>
<td>- Wind parameters (incl. wind gusts)</td>
<td>- Soil parameters</td>
</tr>
<tr>
<td>5 stations</td>
<td>Air temp. and humidity/precipitation</td>
<td></td>
<td>- Wind parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Net radiation, Air pressure</td>
</tr>
</tbody>
</table>

Temporal resolution
(all parameters, except soil)
5 minutes
WegenerNet Data Products

- The incoming raw data are tested for their technical and physical plausibility by a quality control system.

- Weather and climate data products are derived on the basis of best quality station data for single stations and also for regular grids on various temporal scales ranging from 5 min to annual data.

- A major sensor replacement cycle, after about 10 years of WegenerNet operations, was recently completed by August 2016. As a result, all stations are equipped with Meteoservis high-quality sensors now.

Evolution of temperature (left) and precipitation (right) for a convective event on July 4, 2009.
Station Locations and Measurements

- 11 meteorological stations, and one hydrographic station in ≈ 25 km x 18 km mountainous terrain
 (inter-station distance is around 3 to 5 km)
- altitudes from below 700 to over 2100 m.s.l.
- data available since 2010

Johnsbachtal, Austria (top), and the 11 stations in the network (bottom), stations with blue circles measure precipitation
Station Types and Measured Parameters

- **Precipitation**: 7 stations

 (4 weighing gauges, 3 tipping bucket gauges)

- **Snow depth**: 4 stations

- Temperature and rel. humidity: 9 stations

- Wind parameters: 9 stations

- Radiation parameters: 7 stations

- Air pressure: 1 station

- Water discharge, outflow: 1 station

- Temporal resolution: **10 minutes**
Q1. How well can GPM IMERG estimate precipitation at a pixel-level? IMERG final run can show better performance than the NRT runs?

=> Evaluation of GPM IMERG Early, Late, and Final rainfall estimates with WEGN gauge data in southeast Austria

Average-to-grid to grid comparison

- Eight IMERG grids (46.8°N-47.0°N, 15.7°E-16.1°E) are overlapped with the WEGN domain
- Two 0.1° x 0.1° IMERG grids, covered by 40 and 39 WEGN stations, respectively, are selected
- Apr to Oct for 2014 and 2015
DATA

GPM IMERG

- GPM Level 3 product ‘Final’ run; gridded data from PMW, IR estimations and rain gauges analysis at 0.1 degree with 30-min resolution, from Apr 2014
- ‘Late’ and ‘Early’ run datasets, both data are available from Apr 2015
 - Early: forward-only morphing, 4 hr latency, for whom needing a quick answer
 - Late: forward/backward morphing, 12 hr latency, for next-day users

WegenerNet

- WegenerNet Level 2 gridded products; gridded data from 150 tipping bucket gauges at 200 m x 200 m with 5-min resolution, from Jan 2007
Probability density functions by occurrence and cumulative rain volume

- **PDFs** (dashed lines): percentage of rain-rate occurrence at each predefined bin
- **CDFs** (solid lines): relative contribution of rain-rate volume at each bin to the total rain volume

Computed with a bin width of 0.5 mm/30-min
Scatter plots with Q25, Q50, and Q75 values at each bins

- Q75, median, and Q25 at each bins (grey and black lines), on the scatter plots (light pink dots), 30-min data used.
- Scatter plots show WEGN (x-axis) versus IMERG (y-axis) in millimeter per 30-minutes
- Warm (Apr, May, and Oct) and Hot (Jun to Sep) seasons are considered.
Part III WEGN-IMERG Comparison

Time series of IMERG data for rain events

- (left) rainfall event captured by the WEGN. Red boxes indicate two used grids in the study.

- (right) time series of IMERG and WEGN rainfall data for each grid; corresponding time in shaded area
Part III WEGN-IMERG Comparison

Time series of IMERG data for rain events

PMW based data

• (left) rainfall event captured by the WEGN. Red boxes indicate two used grids in the study.

• (right) time series of IMERG and WEGN rainfall data for each grid; corresponding time in shaded area

• It shows clearly the value of more (accurate) PMW estimates in the morphing process, as well as the gauge adjustment to remove systematic biases.
Part III WEGN-IMERG Comparison

RMSE in terms of gauge accumulation time and offset

Final (2014-15)

• Plots of RMSE in millimeter between IMERG and WEGN

• Minimum RMSE at a combination of accumulation: 25 mins and Offset: +40 min

Final (2015)

=> IMERG-F estimates during 09:00-09:30 UTC can be considered as gauge measurements during 09:40-10:05 UTC.
Part III WEGN-IMERG Comparison

RMSE in terms of gauge accumulation time and offset

Final (2014-15)

- Entire
- Spring/Autumn
- Summer

- Plots of RMSE in millimeter between IMERG and WEGN
- Minimum RMSE at a combination of accumulation: 25 mins and Offset: +40 min

=> IMERG-F estimates during 09:00-09:30 UTC can be considered as gauge measurements during 09:40-10:05 UTC.
Q2. GPM IMERG estimates over complex terrain?

Comparing GPM IMERG with Multi-Radar Multi-Sensors in mountain areas

Sungmin O \(^{(1,2)}\), P. E. Kirstetter \(^{(3,4,5)}\)

(1) FWF-DK Climate Change, University of Graz, Austria
(2) Inst. for Geophysics, Astrophysics, and Meteorology / Inst. of Physics, University of Graz, Austria
(3) Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma, USA
(4) NOAA/National Severe Storms Laboratory, Norman, Oklahoma, USA
(5) School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma, USA

Data

IMERG

- GPM Level 3 product ‘Final’ run; gridded data from PMW, IR estimations (satellite-only data) and rain gauges analysis (gauge corrected data) at 0.1° with 30-min resolution

MRMS

- Multi-Radar Multi-Sensor system; 0.01°, 2-min resolution precipitation data from ~180 polarimetric radars, ~9,000 gauges every hour, Model hourly 3D analyses, over the CONUS
- aggregated into 0.1°, 30-min resolution for the study

Only best quality MRMS data (RQI=100) are selected.
Part IV IMERG Estimates over Mountains

IMERG-MRMS comparison in Western US

Mountains (UNEP WCMC) Vulnerable Areas (PRISM Normals)

Mountains information based on elevation and slope
- red: mountains
- green: plains

Climatological data cover the period 1981-2010
- blue: Q80 (wet areas) in June
Part IV IMERG Estimates over Mountains

Daily data comparison over mountains and plains

Mountains

Plains

Q-Q plot
Linear Regression Line
Data number (density)
Sub-regions in Western US

- **Mountains**
 - PNW: Pacific Northwest
 - SC: South California
 - IM: Intermountain (Rocky)
 - NAM: NA monsoon region

- **Plain**
 - GP: Great Plains

Plain and Mountain
 - PNW: Pacific Northwest
 - SC: South California
 - NAM: NA monsoon region

ref. Carrera et al., 2004; Q Li 2005; Lee et al., 2007
Part IV IMERG Estimates over Mountains

Diurnal cycle comparison in the sub-regions

- **average**: averaged rainfall (including zero)
- **frequency**: non-zero data num./each hour’s total data num.
- **gauge corrected and satellite-only IMERG** are used.

X-axis is Local Time
Diurnal cycle comparison in the sub-regions

- MRMS
- IMERG gauge corrected
- IMERG satellite-only

Corresponding areas to IM (left) and GP (right)
Part IV IMERG Estimates over Mountains

Diurnal cycle comparison in the sub-regions

- **MRMS**
- **IMERG gauge corrected**
- **IMERG satellite-only**

Corresponding areas to IM (left) and GP (right)

- Satellite data well describe diurnal cycle patterns, although they tend to overestimate rainfall especially in plains.
- The amplitude of diurnal cycle is affected by the gauge correction.
Looking Forward

Future Plans

- Apply the research methodology for comparing IMERG-WEGN to the next version of the IMERG data,
- Analyze IMERG-MRMS diurnal cycles more completely, focusing on heavy precipitation areas,
- Extend the research framework to the WegenerNet Johnsbachtal which is also located in mountains.
Further Information

www.wegcenter.at/wegenernet
WegenerNet homepage and Literature

www.wegenernet.org
WegenerNet Feldbach data portal

www.bogner-lehner.net/xeis_datenportal.php
WegenerNet Johnsbachtal data portal

http://nmq.ou.edu/
MRMS radar data portal

References

O. et al. (2016): Validation and correction of rainfall data from the WegenerNet high density network in southeast Austria. (*under review*)

O. et al. (2016): Evaluation of GPM IMERG Early, Late, and Final rainfall estimates with WegenerNet gauge data in southeast Austria. (*in preparation*)