1. Introduction

Non-Uniform Beam Filling (NUBF) within footprint of the dual frequency precipitation radar (DPR) on board NASA's Global Precipitation Measurement (GPM) mission core satellite is one of the key uncertainties of the precipitation retrieval algorithms. NUBF is a combined effect of precipitation gradient and intermittence within the footprint and occurs due to spatial variability in both horizontal and vertical direction. While the scanning and vertically pointing radars are the solo source to study the spatial variability in vertical, the dense rain gauge and disdrometer networks are often employed to determine the spatial variability in horizontal direction. The disdrometer networks are mainly available through field campaigns and in a few ground validation sites but are superior to the gauge network due to their higher temporal resolution and ability to measure raindrop size distribution and related integral rain parameters. This study uses disdrometer network that was operated during from Mid-latitude Continental Convective Clouds (MC3E) campaign to study the spatial variability within the footprint.

2. Field Campaign

The MC3E campaign, a joint effort by the US Department of Energy's Atmospheric Radiation Measurement (ARM) and the NASA GPM GV programs, was conducted in North Central Oklahoma (36.7N, 97.1W) from April 22 to June 30, 2015. A total of 21 ARM sites and two diorometers (2DVDs) were deployed at and around the ARM Southern Great Plains site where the distances ranged from 0.4 to 9.2 km. The locations are given based on serial number (SN), while the interpolated points are numbered from 01 to 13. Figure 1 shows the coordinates and distances between the points. Table 1 presents the coordinates and distances between the points.

3. Data Analysis

The standard processing by GPM GV defines rainy minutes as having a minimum rain rate of 0.01 mm h⁻¹ and a minimum number of drops of 10 sampled in one-minute observations. This resulted in an MC3E database of 746 one-minute samples, which were the input for the interpolation routine. Rain intermittence is frequently observed in high-latitude rain and plays an important role in NUBF. We addressed this matter by setting DSD derived rain rates less than 0.1 mm h⁻¹ as zero after interpolation. This eliminated 5 samples where the rain rate fell below the threshold in all 13 sites. Surprisingly, only 34 samples had zero rainfall at one or more sites for the remaining dataset. Since the DPR footprint is a single data point from GPM perspective, the area averaged rainfall is considered to determine the rainfall footprint. Hence, a rain rate threshold of 0.1 mm h⁻¹ was applied to the area averaged rainfall and 12 more samples were eliminated retaining 723 samples. At least 4 out of 13 sites had zero rainfall in these 12 samples even though one sample had 5 zero rainfall sites but area averaged rainfall was above the threshold. Post GPM launch, DPR minimum detectable signals are currently established at 13 dBZ for the Ka-band, high sensitive swath (HS) and for Ku-band normal swath (NS) and 18 dBZ for the matched Ku- and Ku-band swath (MS). The corresponding sample sizes were 703 and 688 for HS and NS, respectively, and were 89 and 69 for MS.

4. Methodology

A three-parameter exponential function is adopted to investigate the spatial variability of DSD and integral rain parameters. The exponential function is expressed as:

\[n(r) = n_0 e^{-r/r} \]

where, \(n_0 \) are nugget and shape parameters, respectively, and \(r \) is the correlation distance. The Pearson correlation coefficient, \(r \), is calculated between the paired 2DVD observations at distance, \(d \). The \(r \) is the correlation between the collocated observations and is set to 0.99 in the absence of collocated 2DVDs. It should be noted that there is variability in drop counts at spatial scales 1-100 m but the correlations of derived DSD and integral rain parameters are mainly higher than 0.90. An initial guess was made for \(m_0 \) and \(m_1 \) using ranges of 0.1 to 300 at an increment of 0.1 and 0 to 2 at an increment of 0.01, respectively. The \(m_0 \) and \(m_1 \) are calculated minimizing the root-mean square error (RMSE) between the observation and equation based correlations. The RMSE is the measure of the goodness of the fit and it is critical for the interpretation of \(m_0 \) and \(m_1 \).

5. Probability and Cumulative Distributions

Moderate-to-heavy rain in southern Great Plains receives relatively high percent of contribution from large drops (> 3 mm in diameter). The presence of large drops results in 14% of the observations Dₘₜ > 2.0 mm as MS threshold. For the same threshold, 11% and 16% of the observations had Zₖu > 40 dBZ and kₖₐ ≥ 0.9, respectively. The presence of large drop also in broader size distribution with relatively low shape parameter of the modeled gamma distribution. The MC3E dataset exhibited drastically different properties than a process conducted at the mid-latitude convective site of Watts Island, Virginia where virtually no observations of R > 10 mm h⁻¹, Dₘₜ ≥ 2.0 mm, and Zₖu > 40 dBZ occurred.

6. Inverse Distance Weight

The accuracy of the Inverse Distance Weight (IDTH) is tested through cross comparison of four physical parameters, Dₘₜ, logNₚ, Rₐ, and Zₖₐ between SN46 and site 01 and between SN47 and site 01. Site 01 is 0.15 and 0.34 km from SN46 and SN47, respectively. There were 707 samples where SN46 and SN47 measured R ≥ 0.1 mm h⁻¹. Figure 2 reveals an excellent agreement between the observed and interpolated parameters. There was also no systematic over- or under-estimation of any parameter. Site 01 had a better agreement with SN46 due to its closer distance. Rain rate was slightly overestimated with 0.6% and 1.8% bias and 4% and 20% absolute bias with respect to SN46 and SN47, respectively.

7. Spatial Variability: Correlation Coefficient

The correlations at a given distance were not sensitive to the choice of threshold for R, kₖₐ, and kₖₐ fields. The parameters of exponential function were therefore very close to each other for all four thresholds. At the same time, there were substantial differences in correlations at a given distance. The correlation of R ranged from 0.93 to 0.95 at a 4 km distance for a given distance. This resulted in high RMSE for these three fields. The correlations of \(\rho \) were not sensitive to the choice of threshold but highly sensitive to the directional variability. The RMSE of the fit was therefore the greatest for \(\rho \) among all fields. The \(\rho \) was larger than 1.0 only for this field and corresponding \(\rho \) was high even though the correlations were less than 0.8 for nearly half of the observations. The correlations at a given distance were more sensitive to the choice of threshold for Zₖₐ, Zₖₐ, and Dₘₜ fields where correlations remained above 0.75 regardless of distance in R threshold database. The correlations of logNₚ also showed sensitivity to the choice of threshold but in reverse order. The exponential fits were still lowest and highest RMSE at MS and R thresholds, respectively.

8. Spatial Variability: Coefficient of Variation

Coefficient of Variation (CV) represents the degree of uniformity of the parameter from highly uniform (CV ≤ 0.25) to extremely variable (CV > 1.00) classes. The remaining three classes may be called mostly uniform (0.25 < CV ≤ 0.5), mostly (or moderately) variable (0.5 < CV ≤ 0.75), and highly variable (0.75 < CV ≤ 1.0). All physical parameters had CV ≤ 1.25 except the shape parameter of gamma model distribution. The vast majority of R had CV ≤ 0.5, only 8% of the observations showed moderate to extreme variability (CV > 0.5). Dₘₜ was lowest across range of R and Zₖₐ. Coefficient of variation for CV > 0.7 was highest across range of R and Zₖₐ. These outliers occurred in back-to-back minutes during a deep convective event where one and two sites did not report rainfall. The vast majority of the observations fell into moderate to high variability classes for CV of logNₚ. The shape parameter, on the other hand, had over a dozen samples where CV = 2 (not shown). These samples correspond to DSD where gamma distribution is probably not the best choice. The CV of Zₖu exhibited mostly high variability but significant number of samples had also moderate variability. The CV of kₖₐ fell mostly into the highly uniform class and the majority of the database had CV < 0.5.

Acknowledgments

Thanks to Patrick Gatlin and Matt Wingo for maintenance of 2DVD during MC3E. Acknowledgments extend to V.N. Bringi and Meihaa Thurai for their efforts in calibrating 2DVD at the beginning of the field campaign. We appreciate DOE ARM for hosting the field campaign in their Southern Great Plains facility and providing two 2DVD data. This research was funded through NASA grant NNX16A45G. Funding support from the GPM Ground Validation Program and NASA PMM Science Team funding provided by Dr. Ramesh Karak are greatly appreciated.

An Experimental Study of Footprint Scale Variability of Raindrop Size Distribution

All Tokay (JCT-University of Maryland Baltimore County and NASA-Goddard Space Flight Center, Greenbelt, Maryland, USA)
Leo Pio D’Addario (Department of Physics and Earth Science, University of Ferrara, Ferrara, Italy)
Federico Porcu (Department of Physics and Astronomy, University of Bologna, Bologna, Italy)
David B. Wolff (NASA-GSFC Wallops Flight Facility, Wallops Island, VA) and Walter A. Petersen (NASA Marshall Space Flight Center, Huntsville, AL)