Overview

Petty (2013) and Petty and Li (2013a,b) demonstrated a new Bayesian retrieval methodology for surface rainfall estimation from resolution-matched TRMM Microwave Imager (TMI) data, using co-located Precipitation Radar (PR) rain rates as the calibration data source. Unique features of this algorithm include the following:

- A novel objective surface type classification based on “similarities” between the means and covariances of multichannel microwave TBs computed for each 1-deg. grid box.
- A novel dimensional reduction technique (Petty 2013) that improves the discrimination of precipitation against noisy backgrounds.
- A precomputed Bayesian lookup table that yields not only a mean surface rain rate but also a complete PDF of possible rain rates for any given TMI pixel.
- Validation of the algorithm against one year of independent PR data demonstrated roughly factor-of-two improvement in RMS error relative to the standard 2A12 rainfall product over virtually every surface type.

The above methodology has now been adapted to the GPM Microwave Imager (GMI) and applied to the first 1.7 years of GMI data (March 2014 – December 2015, using GPM Microwave Imager (GMI) and applied to the first 1.7 years

An early attempt, presented last year (and using far less training data), did not quite achieve the performance previously demonstrated for TRMM. We attributed the degraded error statistics to the following factors:

- Resolution-matched TBs were not available for GMI, so spatial gradients introduced considerable noise into the retrievals, in contrast to the case for the earlier TMI implementation.
- Variations in land surfaces are considerable greater for the GPM owing to its coverage of a much wider range of latitudes (roughly 68S–68N, as compared to 38S–38N for TRMM). Ice and snow are major factors.

We therefore undertook the following tasks:

1. Derivation of coefficients for (de)convolving all GMI channels to a common EFOV similar to that of the 18.7 GHz channels (Petty and Bennartz 2015, see Fig. 1 and Table 1).
2. Derivation of a new surface classification map using a larger number (12) of distinct surface types (Fig. 2).
3. Creation of a matchup database from resolution-matched GMI TBs and DPR (Ku) rain rates.
4. Objective derivation of dimensional reduction coefficients and a new Bayesian data base (in lookup table form) comprising one-half of the available 1.7 years of matchups.
5. Initial validation against the independent half of the data from the same period (Figs. 3–5).

References


Acknowledgements

This work was supported by the NASA PPM project via NASA Grants NNX13AG46G and NNX16AG73G.