

PMM Science Status

Arthur Hou NASA Goddard Space Flight Center

Welcome & Congratulations

To the 2013-2015 PMM Science Team

New U.S. Pl's:

- Brian Colle (State University of New York, Stony Brook)
- Yang Hong (University of Oklahoma, Norman)
- Eugenia Kalnay (University of Maryland, College Park)
- Clifford Mass (University of Washington)
- Anita Rapp (Texas A&M University)
- Carl Schreck (North Carolina State University)

New international PI:

- Alexis Berne (École Polytechnique Fédérale de Lausanne, Switzerland)

GPM Constellation Status

Next-Generation Unified Global Precipitation Products Using GPM Core Observatory as Reference

GPM Constellation Sampling Relative to Current Capability

Current (2012)

- Less than 50% of observations are less than 1 hr apart
- 70-80% are less than 3 hr apart

GPM (2015)

- More than 60% of observations less than 1 hr apart
- 80-90% are less than 3 hrs apart at all latitudes
- Greater number of observations relative to 2012

2012: TRMM, F16, F17, F18, NOAA-18, NOAA-19, MetOp-A 2015: GPM Core, F17, F18, F19, MT, GCOM-W1, NPP, NOAA-18, NOAA-19, MetOp-B

Integrated Schedule of PMM Science Development & Deliveries

Progress in Ground Validation

- GV paradigm shifted from general physical process studies to focused science investigations guided by retrieval algorithm needs:
 - Traceability matrices linking GV measurements to algorithm parameters.
 - GV data beginning to contribute to algorithm development and testing.
- Moving beyond precipitation measurements to quantifying measurement uncertainties to better support modeling and merging algorithm development:
 - Error Characterization Demonstration Site at NASA Wallops Flight Facility.
 - Opportunities for additional sites.
- Community consensus on common measurement methodologies:
 - Shared software for comparing satellite and ground measurements.
 - Recommended calibration standards for post-launch validation sites. Radar scanning strategy under development.
- Growing international collaboration for evaluating and improving GPM algorithms and products worldwide:
 - 22 active PMM projects in 14 countries
 - International GV workshops hosted by GV partners (Next one in Rome, Nov. 2013).

Summary of GV Status

Completed six successful campaigns for physical validation:

- 2 major GPM field campaigns: MC3E (Apr-Jun 2011) & GCPEx (Jan-Feb 2012).
- 2 leveraged partner campaigns: C3VP (Jan 2007) & LPVEx (Sep-Oct 2010).
- Contributions to 2 partner efforts: Pre-CHUVA (Mar 2010) & HyMeX (Sep-Oct 2012).
- * Campaign data being used by algorithm developer and sat-simulator modelers.

Upcoming integrated hydrological validation campaigns:

- Iowa Flood Studies (IFloodS): Apr-Jun 2013
- Integrated Precipitation and Hydrology Experiment (IPHEX): May-Jun 2014

Direct validation:

- Established a Precipitation GV Research Facility at WFF, now fully operational.
- Operational Validation Network (VN) providing ground radar and coincident satellite overpass data over CONUS. The VN software being used by international partners.
- Automated NMQ rain rate data stream for L2/L3 product validation in testing phase.
- * NMQ database being used for radiometer algorithm development over land.

New international collaborations:

- New agreement with Environment Canada to operate GV instruments at 3 Canadian WMO Solid Precipitation Inter-comparison Experiment (SPICE) sites.
- New agreement with the Finnish Meteorological Institute to operate GV instruments at the Sodankyla Snowfall Observatory in northern Finland (~70N).
- Implementation agreement with S. Korea on GV data exchange.
- Pending collaboration with EUMETSAT H-SAF (H-SAF presentation Tue morning).

NASA-DOE MC3E (April 22 – June 6, 2011)

- 70 ER-2 and 45 Citation flight hours including 8 ER-2/Citation coordinated missions
- 3 ER-2 emissivity missions

- Citation microphysics and cloud missions
- Continuous sampling by 5-7 ground radars
- Launch of ~1200 radiosondes

NASA-EC GCPEx (January 17 – February 28, 2012)

- 80 ER-2, 40 Citation, 20 C580 flight hours with 3 triple aircraft missions
- 2 DC-8 emissivity missions Citation and C580 microphysics and cloud missions
- Continuous sampling by 4 ground radars (W, Ka/Ku, X, C-Band) 25 Events sampled

MC3E Algorithm-GV Traceability Matrix

Algorithm issues or		Applicable Measured and/or Diagnosed Parameters															
assumptions	Z	Z	R	PSD sfc	PSD col	PID	ρ b	P	T	Q_{ν}	Qsoil	CN CCN	TW _c	CW	IW	ε/σ _{sfc}	T_B
Path integrated attenuation approach(es)	•	•	•	•	•	•				•			•	•		•	
Hydrometeor Identification (3D)	•	•	•	•	•	•	•		•				•	•	•		
Hydrometeor melting model	•	•			•	•	•	•	•				•		•	•	•
Melting layer identification	•	•			•	•			•						•		
Convective/Stratiform partitioning	•	•	•	•	•	•											•
Dual-Frequency rain rate retrieval	•	•	•	•	•	•										•	
Near surface rain estimate/rain profile	•	•	•	•	•	•										•	
Sub-pixel DSD and rain variability (correlation, errors, beam filling)	•	•	•	•	•	•											•
DSD profile and "&" adjustments	•	•	•	•	•	•											•
Column/Land surface emission			•						•	•	•					•	•
Rain/no rain discrimination	•	•	•	•	•	•			•	•			•	•	•	•	•
Ice particle vs. volume extinction	•	•			•	•	•	•	•	•					•		•
Cloud water profiles	•	•	•						•	•		•	•	•	•		•
Ice process, scattering, and rainfall	•	•	•	•	•	•	•	•					•	•	•		•
Regime controls on precipitation process	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
DSD Gamma-Triplet correlations	•	•	•	•	•	•							•				
CRM/LSM Satellite Simulator Physics	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

MC3E GV measurements			Applicable Measured and/or Diagnosed Parameters																
	Instruments	Measurable	z	Z	R	PSD sfc	PSD col	PID	ρ_b	ρ_p			Qsoil	CN, CCN	TW_c	CW		ε/σ _{sf}	T_B
Ground Radar and Profiler	NPOL, DOE S/C/X Dual-Pol	Z , Vr , W , ZDR , Φ_{DP} , ρ_{hv} , LDR	×		×	X	×	×											
	D3R Ka/Ku Dual-Pol	Z , Vr, DFR, W, ZDR, Φ_{DP} , ρ_{hv} , LDR	×	×	×	X	×	×											
	S/UHF Profiling	Z, Vr, W	X		×	X	X	X											
	MRR K-band Profiling	Z, Vr, W	X		×	X	X	X											
	Ka/W-band Radar	Spectra (Z, Vr)	X		×	X										X			X
Ground Gauge and Radiometer	2DVD/Parsivel Array	DSD, shape, fall spd	X		×	X		X											
	Rain gauge array	Rain rate/accum			X														
	Sounding Array	P, T, RH, wind									X	X							
	ADMIRARI Radiometer, MRR	T _B 19, 37 Z 24 GHz	X		×											×			
	DOE/OK Surface Inst.	P,T,RH, soil moisture and aerosols			×						X	×	X	X					
	AERI Radiometers	T/RH Profile									X	X							
	DOE Flux tower	Eddy fluxes (T,q,u)									X	X							
Aircraft	HIWRAP (Ka/Ku Radar)	Z , Vr , DFR , W , ZDR , Φ_{DP} , ρ_{hv} , LDR	×	×	×		×	×										×	
	CoSMIR (Radiometer)	T _B 37,89, 165.5,183 H/V															X	×	X
	AMPR (Radiometer)	T _B 10,19,37,85 H/V															X	X	X
	2D-C/CIP/2D-P, HVPS	Precip. Image	X		X		X	×	X	X					X		×		
	CDP	Cloud Water/Spectra														X			
	Nevzorov	Total water							X						X	X	X		
	King Probe	Cloud water bulk														X			
	Rosemount Icing Probe	Supercooled water														X			
	CN/UHSAS	Aerosol spectra												X					
	MAPIR Radiometer	T _B 1.4 GHz H/V									X		X						

Improving physical parameters in retrieval algorithms using campaign measurements

Campaign Data
+

Microphysics/EM Modelers (WGs!)
+

Algorithm Developers
=> Algorithm Refinements

To 1st WG/team that improves algorithm performance using field campaign data

Special Recognition of Accomplishments Goes To:

The DSD Working Group and the Combined Algorithm Team

For progress in improving the Combined DPR+GMI Algorithm with better scattering tables and DSD covariance information derived from MC3E field campaign data

Algorithm Status

- GPM algorithm code delivery on schedule:
 - Baseline DPR, GMI, & Combined codes for L2 products delivered to PPS and MOS in Dec. 2011.
 - At-launch Sensor and iMERGE codes delivered in Nov.-Dec. 2012.
 - Additional code deliveries to PPS for End to End (ETE) Testing and Operational Acceptance Testing (OAT):
 - March 2013 ETE#1 Incremental Code (GPM Core sensor algorithms)
 - September 2013 ETE#3/OAT Incremental Code (final code)
- NASA-JAXA JPST algorithm reviews:
 - 3rd JPST algorithm panel review Friday morning, Mar. 22.
- Algorithm status reports (Wed afternoon):
 - Algorithm team meetings on Thursday, Mar 21.
- Radiometer intercalibration status update (Wed afternoon)

Education & Public Outreach Highlights

Education:

- Master Teachers Program to develop lesson plans for Middle School science classrooms focusing on GPM science themes.
- Informal outdoor education by teachers in the Outdoor Environmental Education Program in Montgomery County.

- Beta testing a new Student Ambassadors program for colleges students to develop materials, games, and hands-on activities to be used for workshops, conferences, and classroom visits.

Outreach:

- New GPM education website at http://pmm.nasa.gov/education
- Social media: Twitter account @NASA_Rain and Facebook page @NASA.Rain
- Contests: Completed 2 photo contests on "Extreme Weather" and "Let It Snow". "GPM Anime Character Challenge" contest underway for students (age 13+) and adults to develop anime character based on GPM science themes.

- GPM Science On a Sphere (SOS) entitled "WATER FALLS" to be premiered in Oct. 2013.

NASA

Other Business

- GPM Science Implementation Plan available from URL:
 - https://webdrive.gsfc.nasa.gov/longauth/600/gail.s.jackson/uVPBBoC-launch
 - Username: SIPMarch2013, Password: SIPMarch2013
- Next X-cal WG meeting to be hosted by CNES/CNRS:
 - May 23-24, 2013, Toulouse, France.
- 6th International Workshop for GPM Ground Validation to be hosted by CNR/ISAC:
 - November 4-8, 2013, Rome, Italy.
- Science team newsletter: Contributions/feedback welcome