Radar Algorithm Team/ U.S.

- Chandra:CSIDurden, Steve:JPLKwiatkowski, John:GSILiao, Liang:GSIMeneghini, BobGSITanelli, SimoneJPI
- CSU JPL GSFC/George Mason GSFC/Morgan State GSFC JPL

Outline

- Summary of U.S. participation in DPR algorithm development
- SRT Status
- NUBF Studies

Background

- Over 15 years of experience for Ku-band radar alg
- Extension from Ku- to Ka-band is a well-defined problem; nevertheless
 - Attenuation at Ka-band is about 6x larger than at Kuband (SNR issues)
 - Non-Rayleigh scattering effects much larger at Kaband (e.g., BB isn't so clearly delineated)
 - Algorithm architecture is more flexible but more complex
- The central science challenge is to develop & test dual-freq algorithms

Classification Module

- Objective is to classify into rain-type and ID predominant phase state along radar range – Extension of 2a23 (J. Awaka)
- Chandra/Le are working closely w/ Prof Awaka on a dual-freq classification algorithm
 - Based on an examination of DFR_m profiles & 1st derivative ($DFR_m = dBZ_m(Ku) - dBZ_m(Ka)$)
 - Ideally will work seamlessly with single-freq method across inner/outer swath bndy (in most cases)

Solver Module

- Objective is to estimate rain rate and DSD parameters
 - Extension of 2a25 (Iguchi -> Seto/Iguchi)
- Algorithm covers both single & dual-freq data
- Algorithm uses an iterative method that can either use or dispense with SRT-PIA
- Makes use of scattering tables

Utility of Scattering Tables

- Applicable to most radar & radar-radiometer methods
- Encapsulates microphysical assumptions of particle models
- Provides sensitivity tests of algorithms
- Allows a separation between the mechanics of the algorithm and the particle microphysics assumptions
- Establishes a linkage between the algorithm & microphysics/GV communities

Solver Module (scattering tables)

- Both Japan & U.S. are working on scattering table generation
- General agreement as to basic structure/content
 - Gamma DSD with μ constant or function of Λ
 - Scattering parameters normalized by a number concentration parameter & provided as function of a characteristic size parameter

- e.g., (N_w, D_m) or (N_T, D_0)

- Liao and Williams have generated a number of tables for snow, mixed-phase and rain
- Kuo and Johnson working on physically-based, computer-generated dry & wet snow particle models

Surface Reference Technique Module

- Objective is to estimate the path-integrated attenuation (PIA)
- Improvements in the basic SRT
 - Forward/backward; along/X-track; temporal (2a21, v7)
 - Land classification (Durden, Tanelli)
 - Weak-rain/wet-surface reference (Seto)

Surface Reference Technique Module

• Extensions of the basic method

- PIA ratio (PIA(Ka)/PIA(Ku)) for NUBF (Tanelli, Durden)
- PIA estimates at sub-beam resolution for NUBF (Takahashi, Hanado, Iguchi)
- Correlation properties of $\sigma^0(f_1)$, $\sigma^0(f_2)$ (GSFC)

Correlation properties of $\sigma^0(f_1)$, $\sigma^0(f_2)$: DSRT

SRT

$$PIA(f_i) = 2\int_{0}^{r_s} k(f_i, s) ds = \sigma_{NR}^0(f_i) - \sigma_R^0(f_i)$$

$$var(PIA(f_i)) \approx var(\sigma_{NR}^0(f_i))$$

DSRT

$$\delta PIA = PIA(f_2) - PIA(f_1) = 2 \int_0^{r_s} [k(f_2, s) - k(f_1, s)] ds$$
$$= [\sigma_{NR}^0(f_2) - \sigma_{NR}^0(f_1)] - [\sigma_R^0(f_2) - \sigma_R^0(f_1)]$$

 $\operatorname{var}(\delta PIA) \approx 2\operatorname{var}(\sigma_{NR}^{0}(f))\{1 - \rho[\sigma_{NR}^{0}(f_{2}), \sigma_{NR}^{0}(f_{1})]\}$

$$\rho \rightarrow 1$$
, $var(\delta PIA) \rightarrow 0$

Error Sources

• DSRT

- Errors in δPIA estimation
- Errors in estimating PIA from δ PIA
- 'saturation' error loss of surface signal at either Ka or Ku-band

• SRT

- Errors in PIA estimation
- No comparable error: direct estimation of PIA
- 'saturation' error loss of surface signal at the particular freq of interest

Test Environment

- Goddard Test & Validation data
 - MC3E_150 and _300 & LPVEX (Matsui)
 - Generate L1 data sets using JAXA template and radar simulator (Kim)
 - Run L2 modules: Ku, Ka/Ka-HS, and DPR
 - Compare 'true' PIA with retrieved PIA's
 - Single & dual-freq methods
 - Baseline: σ^{0} statistics derived from the JPL APR-2 data

L2 output data (Ku-band)

L2 output data (Ka-band)

High correlation, 0°-9° Ocean, PIA(Ku)

High correlation, 0°-9° Land, PIA(Ku)

High correlation, 0⁰-9⁰ Ocean, PIA(Ka)

High correlation, 0⁰-9⁰ Land, PIA(Ka)

Ku-Band: L1BKu_stdres_zerovar_300_xrandz_mc3e7900_Mar062013.hdf5 Ka-Band: L1BKa_stdres_zerovar_300_xrandz_mc3e7900_Mar062013.hdf5

Ku-Band: L1BKu_stdres_zerovar_300_xrandz_mc3e7900_Mar062013.hdf5 Ka-Band: L1BKa_stdres_zerovar_300_xrandz_mc3e7900_Mar062013.hdf5

Estimation Procedure

- Along the jth Column
 - Write Hitschfeld-Bordan PIA estimate for each column
 - The HB PIA, however, is a function of the high-res (not measurable) $\rm Z_{\rm m}$
 - Replace high-res $\rm Z_m$ with the product of the low-res $\rm Z_m$ (measurable) and a scalar factor, ϵ_i
 - Adjust ε_i such that PIA_i(HB) = PIA_i(SRT)
 - This provides high-res estimates of the atten-corr Z
 - Use R-Z relation to convert Z to R at high-res
 - Average R, Z back to the low-res

Top: High resolution true/input vales of Z_m and Z for an incidence angle of 10⁰ negative gradient in Z in X-track direction
 Bottom: High resolution estimates of Z_m and Z using NUBF solution

Top: High resolution true/input vales of Z_m and Z for an incidence angle of 10⁰ positive gradient in Z in X-track direction
 Bottom: High resolution estimates of Z_m and Z using NUBF solution

Left: negative X-track gradient ; Right: positive X-track gradient Solid: True; Dotted: NUBF solution; Others: standard solutions w/o NUBF

Left: negative X-track gradient, negative vertical gradient Right: negative X-track gradient, positive vertical gradient Solid: True; Dotted: NUBF solution; Others: standard solutions w/o NUBF

NUBF- comments

- For the simple cases considered, the NUBF algorithm (Ku-band) almost always does better than the standard algorithm in both R & Z
- We have assumed, however, perfect measurements of the multiple PIA's needed in the solution
- Improvements are not a strong function of incidence angle (10⁰ and 15⁰)
- More realistic tests of the approach are needed
 Use TRMM data
 - Use airborne data & radar simulator
- If results are positive, we may want to upgrade operational SRT to estimate multiple PIA's

Summary of SRT

- Dual-frequency radar may provide a way to improve estimates of path-integrated attenuation, which should lead to improvements in retrieval accuracy of R & DSD parameters
- However, errors caused by conversion of δA to A and the surface 'saturation' problem may reduce the effectiveness of the dual-freq approach
- Use of surface return might also be important in deducing the NUBF but these methods have not been demonstrated at an operational level
- Improvements in the land application of the SRT might be possible using work done in Japan & at JPL

Summary

- U.S. radar team members are working closely with Japanese counterparts in the writing/testing of algorithms
- Airborne radar data from JPL & GSFC will continue to be used for testing retrieval methods, improving σ^0 models, devising/testing new methods
- Several new ideas/methods have been proposed that might have an impact on the Day-2 algorithms

Hitschfeld – Bordan Eq. for ith gate of jth column $Z_{ij} = Z_{m,ij} / [1 - qh \sum_{k=1}^{i} \alpha_{kj} Z_{m,kj}^{\beta}]^{1/\beta} \qquad (1) \text{ where } : k = \alpha Z^{\beta}$

$$A_{j} = 10^{-0.1\beta PIA_{j}} \approx 1 - qh \sum_{i=1}^{n_{j}} \alpha_{kj} Z_{m,kj}^{\beta}$$
(2) where : $PIA = 2\int_{0}^{r_{s}} k(s) ds$

Express high resolution Z_m *in terms low resolution data* (row×column)

$$Z_{m,ij} = \varepsilon_{j}^{1/\beta} \hat{Z}_{m,i}$$
(3)
$$\alpha_{ij} = \alpha_{i}$$
(3)

(3) \rightarrow (2), solving for ε_j

$$\varepsilon_{j} = [1 - A_{j}] / qh \sum_{k=1}^{n_{j}} \alpha_{k} \hat{Z}_{m,k}^{\beta}$$

$$\tag{4}$$

 $(4) \rightarrow (3), (3) \rightarrow (1):$

$$Z_{ij}^{\beta} = \hat{Z}_{m,i}^{\beta} [1 - A_j] / \{qh[\sum_{k=1}^{n_j} \alpha_k \hat{Z}_{m,k}^{\beta} - (1 - A_j) \sum_{k=1}^{i} \alpha_k \hat{Z}_{m,k}^{\beta}]\}$$
(5)

where n_j is the number of range gates in *j*th column

at the surface
$$(i = n_j)$$
,
 $Z_{n_j j}^{\beta} = \hat{Z}_{m, n_j}^{\beta} / A_j = \hat{Z}_{m, n_j}^{\beta} 10^{0.2\beta \int_0^{n_j} k(s) ds}$
(6)

high resolution rain rates:

$$R_{ij} = aZ_{ij}^b \tag{7}$$

to estimate coarse resolution data:

 $\hat{R}_i = \sum_j w_j R_{ij} / \sum_i w_j$

 $\hat{Z}_i = \sum_j w_j Z_{ij} / \sum w_j$

DSRT vs SRT

- In summary
 - If the correlation of σ^0 (with freq) is high and if surface return is detectable, then the estimate of δ PIA, via the DSRT, is more accurate than the estimate of PIA at either freq, using the SRT
 - This δPIA can be used in the retrieval of the profile of the characteristic size parameter of the PSD
 - However, to estimate parameter associated with the particle number concentration, we need to estimate PIA(Ku) or PIA(Ka) from δPIA; this estimate, however, depends on the PSD along the column, introducing an additional error into the retrieval

SRT – Summary

- Dual-freq version of SRT should improve estimates of path attenuation under certain circumstances
 - SNR at surface > ~3 dB at both freqs
 - High correlation between $\sigma^{0}(Ku)$, $\sigma^{0}(Ka)$
 - We expect improvements over land at near-nadir incidence; over ocean off-nadir (~6⁰-9⁰)
- Future Work
 - Study errors in estimating PIA(Ku/Ka) from δPIA
 - Use airborne data to study statistics of $\,\sigma^{\scriptscriptstyle 0}$
 - Examine multiple PIA's for NUBF correction

- Non-uniform beam filling (NUBF) effects can lead to significant errors in rain estimation
- For off-nadir incidence, Takahashi et al. (2006) showed the feasibility of est. multiple pathintegrated attenuations (PIA) w/i the beam
- These PIA estimates can be used to obtain high resolution attenuation-corrected Z, R
- This provides a correction to NUBF in the Xtrack plane

