

Relationships between DSD Parameters Observed at Multiple GV Sites

Collaboration with the NASA PMM DSD Working Group: V.N Bringi, Larry Carry, Patrick Gatlin, Ziad Haddad, Liang Liao, Robert Meneghini, S. Joe Munchak, Stephen W. Nesbitt, Walt Petersen, Simone Tanelli, Ali Tokay, Merhala Thurai, Anna Wilson, and David Wolff

1. DSD Working Group: Bridging Algorithms and GV

General Objective: Use Ground Validation (GV) data to investigate relationships between DSD parameters that support, or guide, the assumptions used in satellite retrieval algorithms.

Rationale: Relationships between DSD parameters, if found, can be used to constrain the unknowns in satellite algorithms.

2. Mass Spectrum Parameters

A gamma shaped raindrop size distribution (DSD) can be described using three parameters: N_w , D_m , and μ :

$$N(D; N_w, D_m, \mu) = N_w f(\mu) \left(\frac{D}{D_m}\right)^{\mu} \exp\left(-\frac{(4+\mu)}{D_m}D_{\mu}\right)^{\mu}$$

- It is difficult to estimate μ and D_m from individual DSD spectra because μ and D_m are not independent in the above equation. Changes to one parameter causes the other parameter to change. See Chandrasekar & Bringi (JTECH, 1987, **4**, 464-478) for more details.
- This study investigates relationships between Mass Spectrum Parameters without assuming a DSD shape.

Christopher Williams University of Colorado Boulder

Cooperative Institute for Research in Environmental Sciences (CIRES) Poster # 240 NASA Precipitation Measurement Mission (PMM) Science Team Meeting 18-20 March 2013, Annapolis, MD

6. Concluding Remarks

A power-law relationship was observed between the mass spectrum mean diameter D_m and mass spectrum standard deviation σ_m with the approximate form: $\sigma_m \sim 0.29 D_m^{1.5}$

Assuming a gamma shaped DSD, the $\sigma_m - D_m$ power-law relationship can be expressed as a $\mu - D_m$ power-law:

$$\sim \frac{12}{D_m} - 4$$

The power-law relationship was observed at four different locations (Alabama, Oklahoma, Canada, and Finland).

3. Data Sets

Instrument: 2-Dimensional Video Disdrometer (2DVD)
1-minute surface drop size spectra, N(D)

•NASA Ground Validation (GV) field sites

	Name	Location	Duration	# units	Minutes
	Huntsville	Alabama	23 month	3	20,954
	MC3E	Oklahoma	3 months	5	5,175
	GCPEx	Canada	4 months	2	972
	LPVEx	Finland	4 months	3	<u>2,454</u>
				Total	29,555

4. Frequency of Occurrences

The plot below shows the frequency of occurrence of the observed σ_m vs. D_m for 20,954 spectra from Huntsville. If we assume a gamma shape DSD, there is a relationship between $\sigma_m - D_m - \mu$ (also assuming $D_{max} = \infty$):

$$\sigma_m^2 = \frac{D_m^2}{\mu + 4}$$

Lines of constant
$$\mu = 0, 5, \text{ and } 10$$

are shown on $\sigma_m - D_m$ plot.

Can calculate μ for each observation using:

$$\mu = \frac{D_m^2}{\sigma_m^2} - 4$$

Can easily convert between σ_m and μ

