
 
 

 Goals 
• To develop state of the art algorithms for DOWNSCALING, FUSION, RETRIEVAL and 

ASSIMILATION of the non-Gaussian multi-sensor geophysical observations via SPARSE 
REPRESENTATION and  NON-SMOOTH CONVEX OPTIMIZATION. 

 

 Motivation: 
 

• As multi-sensor geophysical data will be available routinely from multiple ground-
based and spaceborne sensors, the need for new classes of estimators with less 
uncertainty becomes imperative for hydro-meteorological applications. 

• Many geophysical signals are sparse in an appropriately chosen basis (e.g., wavelet, 
Fourier). In other words, a large number of expansion coefficients are near zero while a 
small number of them are significantly non-zero, carrying the energy and information 
content of the geophysical signal.   

• The observed sparsity and recent developments in non-smooth convex optimization 
promise new classes of non-linear estimation algorithms which outperform the classic 
least squares (LS) methods. These new estimators can effectively capture potential 
singularities and abrupt transitions in geophysical states of interest. 

 
 

 a Probability Model  
 

• Geophysical signals often exhibit sparsity in a pre-selected basis. In other words, 
expanding the geophysical signal of interest in an appropriately chosen domain, a large 
number of expansion coefficients are (near)-zero while a small number remains 
significantly non-zero.  Distribution of the expansion coefficients are typically symmetric 
with heavier tail than the Gaussian case which can be well parameterized by the family 
of Generalized Gaussian distributions.   

 
 
 
 
 
 
 
 
 
 

 Sparsity of Geophysical Signals in the Wavelet Domain  
 

• Many geophysical signals are intermittent. In other words, they suffer from frequent 
jumps and isolated singularities, followed by relatively calm periods of low activity and 
variability. These type of geophysical signals typically exhibit a sparse representation in 
the wavelet domain.  

• Rainfall Images: Rainfall reflectivity images exhibit remarkable sparsity in the wavelet 
domain.  

 
 
 
 
 

 

  Problem Statement  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Results on Rainfall VarDS  

 

 

 

 

 

 

 

 

 

 

 

 

    Results on Rainfall VarDF 

 

 

 

 

 

 Generalized Gaussian Distribution (GGD) 
spans a probability continuum  from Delta Dirac 
(p=0) to a uniform density (p→∞).  The Gaussian 
(p=2) and Laplace (p=1) densities are special cases.  

 
 

Sparsity Promoting Variational Downscaling, Data fusion and Assimilation  
Mohammad Ebtehaj a,b , Efi Foufoula-Georgiou a   

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 Regularized VarDA  in spectral domains using linear advection-

diffusion equation 
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Evidence of heavy tailed distribution and sparsity of precipitation in the wavelet domain, (a) A ground-
based radar rainfall reflectivity snapshot (1 × 1 km) over Houston, TX on 1998/11/13 (00:02:00 UTC). (b) Probability 
histogram of the horizontal derivatives (wavelet coefficients); solid line: fitted Generalized Gaussian density with 
𝜆 = 0.9; and broken line: Gaussian density for comparison. The log-probability histogram in (c) contrasts the heavy 
tailed structure of precipitation derivatives versus the Gaussian distribution 

● The variational downscaling method, using the l1-regularization, is 
examined to enhance resolution of rainfall reflectivity images. To 
synthetically produce coarse scale observations, the rainfall images at 
resolution 1 × 1  km are coarse grained with an average filter of size 
4 × 4  and 8 × 8 . Relative to the standard deviation of the rainfall fields a 
small amount of noise (i.e., standard deviation of 1e-3) is also added to 
resemble observation noise. 

 Results of the variation rainfall DS, using l1-regularization. The main advantages compared to 
stochastic interpolators are:  (1) the downscaled field is unique with reduced estimation error; (2) the 
method is robust to measurement noise; (3) the solution is free of the blockiness. 𝐑𝐌𝐒𝐄 = 𝐱 − 𝐱 2/
𝐱 2; 𝐑𝐌𝐒𝐄 = 𝐱 − 𝐱 1/ 𝐱 1; 𝐏𝐒𝐍𝐑 = 20 log max 𝐱 /𝑠𝑡𝑑(𝐱 − 𝐱 ) .  

ill-posed ! 
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Sparsity of some geophysical signals, top panel from left to right: (a) a level III NEXRAD rainfall reflectivity 
image in dBZ, over Texas on 1999/03/29 (20:13:00 UTC) at resolution 1 × 1 km; (b) hillshade representation of high 
resolution lidar topographic data of a small watershed (2.8 km2 area) in the Oregon coast range near Coos Bay at 
resolution 2 × 2 m; and (c) 40 years of daily streamflow signal (1948-1988) of Leaf river basin at Collins station (1944 
km2  draining area), Mississippi. The bottom panels from left to right (d)-to-(f), show the corresponding probability 
histograms of the standardized wavelet coefficients in a probability scale.  

• VarDS Problem: To obtain a high-resolution estimate of the true state ( 𝐱 ∈ ℝ𝑚 ) from a single noisy and down-sampled observation ( 𝐲 ∈ ℝ𝒏),  via a linear 
observation model, where  𝑚 ≫ 𝑛. The weighted least squares (WLS) solution for the downscaling problem is not unique (Uniqueness) as there are more unknowns 
than the equations.  

• VarDF Problem: To obtain a high-resolution estimate of the true state ( 𝐱 ∈ ℝ𝑚 ) from a series of noisy and down-sampled observations ( 𝐲i ∈ ℝ𝒏𝒊  ),  via the a  
linear observation model,  where Σ𝑛𝑖 ≫  𝑚. The weighted least squares (WLS) solution for the data fusion  problem is unique (Uniqueness) as the system of 
equation is over-determined; however, is very sensitive to observation noise (Stability). 

• VarDA Problem : To obtain a high-resolution estimate of the true initial condition  ( 𝐱 ∈ ℝ𝑚) from a series of noisy and down-sampled observations ( 𝐲𝐢 ∈ ℝ𝒏𝒊) 
and background state ( 𝐱𝐛 ∈ ℝ𝑚 ), which is typically the forecast from the previous time step. The DA problem is also over-determined as the number of equations 
are more than the unknowns and has a unique solution in a linear setting.  
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Regularized Formulation:  
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Regularized Formulation:  

Classic Formulation: 

Regularized Formulation:  𝑝 𝑥 ∝ exp −𝜆 𝑥 𝑝  

Metric Observations VarDs 

(km) 4X4  8x8 4X4 8x8 

RMSE 0.19 0.29 0.14 0.19 

MAE 0.15 0.25 0.11 0.17 

PSNR 23.8 19.6 27.0 24.0 
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Metric Observations DsF 

(km) 6X6 12x12 1x1  

RMSE 0.25 0.35 0.17 

MAE 0.21 0.32 0.15 

PSNR 21.3 18.1 25.0 

Results of the variational VarDF, 
using the l1-regularization for fusing multi-
sensor remotely sensed rainfall reflectivity 
fields. (a-b) Reconstructed low-resolution 
and noisy rainfall observations at scales of 6 
and 12 km in grid spacing. (c) The results of 
the WLS solution, and (d) the solution of 
the l1-regularized with 𝜆 = 1𝑒 − 3.  

• Statistical Interpretation: The classic weighted least squares solutions can be interpreted as the Maximum Likelihood  (ML) estimator and the regularized 
formulations are the Maximum a posteriori Estimator (MAP).    

𝐱 ML   = argmaxx 𝑝 𝐲 𝐱 = argminx − log  𝑝 𝐲 𝐱 = argminx  
1

2
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• 4D-VAR: The promise of the proposed regularized 4D-VAR data assimilation 
methodology, is shown via assimilating noisy observations into the dynamics of 
the heat equation with top-hat initial condition.  

𝐱𝑡 𝑠, 𝑡 + 𝑎 𝐱𝑠(𝑠, 𝑡) = 𝜖 𝐱𝑠𝑠(𝑠, 𝑡) 
𝐱 𝑠, 0 = 𝐱0 𝑠  
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 (a) flat top-hat, (b) quadratic top-hat, (c) periodic sinusoidal, and (d) square-exponential initial conditions and 
a 1D sample of the available downsampled and noisy observations in the 4D-VAR. The first two in (a) and (b) exhibit 
sparse representation in the wavelet domain while the next two initial conditions show sparse representation in the 
discrete cosine domain (DCT). Initial conditions are evolved under the model equation with 𝜖 = 4 [L2/T], while the 
broken lines show the time instants where the low-resolution and noisy observations become available. 

compares the results of the classic and ℓ1-norm RVDA  in a 4D-VAR setting. (a-b) results of the classic 4D-VAR  
and (c-d) results of the ℓ1 regularized 4D-VAR.    
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Sparsity a Ubiquitous Signature 
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log(R) mm/hr● It has been long understood that multiple sources of rainfall observations 
are highly corrupted with observation error. Figure 6 shows a snapshot of 
the Hurricane Claudette 07-15-2003 at UTC 11:51:00 observed 
coincidentally with the TRMM and ground-based NXRAD over Texas-
United States. The cross section A-A shows the fact that how much the 
products of TRMM-PR, TMI and NEXRAD might be different, which 
necessitates the need for developing robust and practical rainfall fusion 
algorithms. 
 

(a) TRMM-PR (2A-25) surface rain of the hurricane Claudette 07-15-2003 at UTC 11:51:00; (b) 
TMI (2A-12) surface rain rate, (c) ground based NEXRAD observations using convective 𝑍 = 300R1.4, 
(d) the cross-section A-A. It is clear that the TRMM products are severely underestimating the rain rate 
compared to the ground-based observations.  
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White Background Error ( 𝐁 ≅ 0.08 𝐈;  𝐑 ≅ 0.10 𝐈 ) 

  IC-1, 𝜅 B = 1 

  MSE MAE BIAS 

R4D-VAR 0.019 0.0099 0.0016 

4D-VAR 0.070 0.0590 0.00044 

  IC-2  𝜅 B = 1 

R4D-VAR 0.030 0.023 0.0038 

4D-VAR 0.096 0.077 0.0022 

Correlated  Background Error ( 𝐁 ≅ 0.08 𝐂𝐁;  𝐑 ≅ 0.10 𝐈 ) 

IC-1  𝜅 B ~105 

R4D-VAR 0.022 0.019 0.0035 

4D-VAR 0.086 0.054 0.0011 
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compares the results of the classic and ℓ1-norm RVDA in a 4D-VAR setting, while the background error is 
severely ill-conditioned.  
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