Unified formulation of single and two-moment
normalizations of the rain drop size distribution
based on the Gamma probability density function
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Comments

This study offers a unified formulation of single and double-moment
normalizations of the raindrop size distribution (DSD), which have been proposed
in the framework of the scaling analysis in the literature.

The key point is to consider a well-defined “general distribution” g(x) as the
probability density function (pdf) of the raindrop diameter scaled by a
characteristic diameter Dc. We use the ratio of the 4" to the 3" DSD moments as
the characteristic diameter and the two-parameter gamma pdf to model the g(x)-
function.

The theory is illustrated with a three-year DSD time series collected with a
Parsivel disdrometer, including a large variety of convective and non-convective
rainfall events representative of the rainfall climatology in the Cevennes region,
France. It is first shown that three DSD moments (M, Ms; M,) allow to
satisfactory model the DSD both for individual spectra and for time series of
spectra.

The formulation is then extended to the one- and two-moment normalization by
introducing single and dual power-law models between the explained moments
(total concentration, characteristic diameter) and the scaling moment(s).
Compared with previous scaling formulations, our approach explicitly accounts
for the prefactors of the power-law models to yield a unique and dimensionless
g(x), whatever the scaling moment(s) considered. A parameter estimation
procedure, based on the analysis of the power-law regressions and the so-called
self-consistency relationships, is proposed for both the one- and two-moment
normalizations.

When implemented with contrasted scaling DSD moments (rainrate and/or radar
reflectivity), the method yields g(x)-functions consistent with the one obtained
with the three-moment normalization, although the 3-year DSD time series
exhibits quite a large variability.

The intra-event variability of the DSD is illustrated for 22 October 2008 rain event:
it is shown that very consistent g(x)-functions can be obtained for homogeneous
rain phases, whatever the scaling moments used, and that the g(x)-functions may
present contrasting shapes from one phase to another. This supports the idea
that the g(x)-function is process-dependent and not unique as hypothesized in
the scaling theory.
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DSD intra-event variability: the 22 October 2008 event
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Normalization framework phase 1 | phase 2 | phase 3 | phase 4
Z 0.71 0.33 1.20 12.8
R 0.89 0.63 1.26 13.4
ZR 1.58 2.06 1.08 14.3
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