Snow Detection Over Land and Snow Retrieval Database Building Over Ocean

Guosheng Liu

Florida State University

Contributors:

E.-K. Seo (Kongju National University, Korea)

Y. Wang, H. Nowell, Y. You (FSU)

G. Elsaesser (CSU)

Research During the Past Year

- Scattering Table for Aggregates
- Liquid water characteristics in snowing clouds
- Snow detection algorithm over land
- Snow retrieval database over ocean based on ECMWF

Snowfall Detection Over Land

176 GHz TB's Response to Snowfall

Warmer or Cooler at high-frequency microwaves when it is snowing ?

Cloud Liquid Water (07/28/2007)

IS: Isolated Shallow ID: Isolated Deep ES: Extended Shallow ED: Extended Deep NP: Non-Precip Shallow < 5km < Deep

Isolated < 40km < Extended

CloudSat dBZ & AMSR-E LWP

Cloud Liquid Water (08/26/2006)

CloudSat dBZ & AMSR-E LWP

The Abundance of Liquid in Snowing Clouds

10

	10						
	N _{Total}	$N_{LWP>0}$	LWP	σ_{LWP}	MaxZ _e	SurfZ _e	T_{2m}
	-	N _{Total}	$(g m^{-2})_{-}$	$(g m^{-2})^{-1}$	(dBZ)	(dBZ)	(°C)
	8	Total		-			
IS	4,732,498	75%	50	63 _	ES	-8	-9.4
ID	8 12,944	83%	53	69 _	- ED	-2	0.4
ES	, 5 10, 5 10,966	84%	/ /98	96 -		-5	-14.2
ED	2 11,62 8 ,358	67%	/ 13	117	3	0	-13.9
NP	₿ 3,380,035	55%	/ 32	59	-9	-	-6.4
ALL	29,904,801	72%	74	94	-1	-4	-13.1
	Ш I	1					

Table 1. Statistics of Over Ocean Snowing Clouds^{*}

* N_{Total} : total number of observations (pixels) $N_{LWP>0}$: number of observations that have retrieved liquid water path greater than 0, LWP; mean liquid water path, σ_{LWP} : standard deviation of liquid water path, $MaxZ_e$: the maximum value in the mean radar reflectivity factor profile, $SurfZ_e$: mean of radar reflectivity factors near the surface, T_{2m} : mean of 2m air temperatures.

 $log_{10}LWP (gm^{-2})$

Impact on Brightness Temperatures – RT Model Runs

(GMI Frequencies, 53 degree Viewing Angle, High-Lat Winter Atmosphere, Ocean)

- 37 GHz: mostly warming, good for liquid water retrieval
- 89 GHz: competing between liquidwarming and snow-cooling

-166 GHz: snowing cooling dominates, but liquid significantly reduces the scattering signature

- 183+/-7 GHz: vapor effect strong. Because viewing at 53 degree, vapor effect much stronger than that so-farseen at MHS channels Collocated AMSUB and CloudSat

Surface Air Temp. < 2C 40-50N, 75-85W 2006.06 – 2008.12

Large TB spread for coldclear-days

Snowfall Probability in (AMSU-B) TB's EOF Space

- Collocate AMSU-B/MHS with CloudSat
- EOF Analysis of AMSU-B/MHS TB's, Use First 3 PCs
- Determine Snowfall Probability in EOF Space

Projection to PC1

Building Retrieval Database Over Ocean Based on ECMWF & RTM

Data

2005.11.01 - 2006.6.30

ECMWF (provided by Greg Elsaesser, CSU)

Original resolution:

T799: ~25km (?)

4 forecasts/day

Thinned Data

Sample every 5th latitude and every 5th longitude

Sample every 10th day

Variables

. . .

Cloud liquid, cloud ice, rain, snow, cloud fraction, T, Ts, T2m, q, p,

SSMIS (L1C from CSU)

- 92V, 92H 150H, 183+/-1H, 183+/-3H, 183+/-7H
- 14x13, 14x13, 14x13, 14x13, 14x13, 14kmx13km

Radiative Transfer Model (Liu, 1998)

Gas absorption: Rosenkranz (1998)

Sea Surface Emissivity: Guillou et al. (1998) ocean + Schluessel and Luthardt (1996) wind adjustment

Fresnel reflection

Delta-4 Stream

- Water Species: cloud water, cloud ice, rain, snow, graupel (did not use in this study)
- Ice/snow shapes: rosettes, sectors, dendrites (scattering properties from DDA)

Histogram MidLat (30S-40S)

Histogram HighLat (50S-60S)

Mean TBs (92 & 150 GHz)

Mean TBs (183+/-1,3,7 GHz)

For Raining/Snowing pixels Only

- The importance of using sub-pixel variability correction

Same Effect, But May Be Less Significant for Higher Latitudes (lower rainrates)

Conclusions

- Snowfall Detection Over Land:
 - Liquid Water in Snowing Cloud A big problem, in addition to surface emissivity uncertainty
 - EOF-based detection method shows promising results
- Snowfall Retrieval Over Ocean:
 - Database Building: ECMWF + RT shows similar TB histogram to SSMIS's
 - However, for precipitating conditions, sub-pixel variability correction needed.
- See Poster for Details