GPM Combined Algorithm Status

Bill Olson and Hirohiko Masunaga

Joint Algorithm Teams & Working Group Contributors

Liquid Water Content Estimates

Ensemble Kalman Filter estimates of LWC using different input:

Algorithm Theoretical Basis

DPR / GMI Sampling and Resolution

Algorithm Theoretical Basis - Main Progress/Activities

- new "solver" that improves consistency between radar solutions at fine resolution and lower-resolution radiometer observations.
- beta version of the satellite algorithm has been distributed to the team in Sept. 2011.
- updated databases for Bayesian estimation of "non-raining" parameters over ocean and land surfaces.
- combined team members "meet" every month to plan testing of potential modifications within existing algorithm architecture.
- <u>bottom line</u>: currently we have an algorithm that utilizes
 Ku + Ka + microwave over ocean and Ku + Ka over land.
 HF microwave won't be utilized until we understand impact.

Algorithm Theoretical Basis

Environment Module

- geographic lookup.
- interpolate TB to DPR locations.

• use TB to find "rain possible" regions.

Output is field of environmental parameters over swath at DPR resolution.

• retrieve environmental parameters T_s, TPW, CLWP, U_{10m} (emissivity EOF weight; land) outside of "rain possible" regions.

 interpolate environmental parameters into "rain possible" regions.

Algorithm Theoretical Basis

Algorithm Theoretical Basis Radiometer Module

 simulate upwelling TB for each ensemble member profile at each precipitating DPR footprint location.

• convolve simulated TB to simulate lower-resolution GMI TB.

Ensemble Kalman Filter
 q_{vapor}, q_{cloud}, N_w profile ensembles using
 GMI TB, but only at "coincident"
 DPR location, where antenna
 pattern response is greatest.

Test Plan Outline

Sensitivity Studies (ongoing)

• Data: airborne or TRMM Z_{Ku} retrieval -> synthetic Z_{Ka} , PIA's, TB's

• Tests: basic algorithm mechanics. sensitivity to input data. sensitivity to a priori assumptions. sensitivity to particle scattering assumptions. sensitivity to land surface characterization. sensitivity to phase transition, environmental data.

Physics Studies (beginning)

• Data: airborne Ku, Ka, PIA's, TB's, *in situ* microphysics; e.g., MC3E data.

Tests: e.g., test consistency of physical models with simultaneous observations using algorithm framework; following Liao et al. (2005).
 e.g., test *in situ*-derived Z vs. observed Z.

Testing - Application to Simulated TRMM Data

TMI simulated from Ku

Ku-only 5% bias; 35% rms

Ku+TMI –2% bias; 15% rms

<u>w/positive bias in</u> <u>initial N_w</u> Ku-only 43% bias; 41% rms Ku+TMI 18% bias; 14% rms

Test Plan Outline Pre-Launch "Validation" Studies (beginning winter 2012)

• Data: TRMM Observations

CRM-generated GPM Observations (e.g., tropical MCS, midlatitude squall line, synoptic-scale snow, lake effect snow, high-latitude shallow stratiform).

 Tests: compatibility with PPS fitting of physical model to data. retrieved parameters within realistic ranges? is attenuation correction of Z data reasonable? how well are rain rates and DSD's estimated? (data sensitivity, e.g. Ku vs. Ku + Ka, ancillary data source. state sensitivity, e.g. land vs. ocean, high vs. low latitude.)

PPS GPM

formats

• TRMM Validation: Primary Validation Sites (Kwajalein, Melbourne) GPM Validation Network (VN Z's and NMQ rain rates)

Post-Launch Validation Studies (beginning 2014)

• Data: GPM Z_{Ku}, Z_{Ka}, PIA's, TB's.

• Tests/Validation: see above; extend to GV in other regimes.

Testing - Application to TRMM Data Tropical Cyclone Floyd

Pacific Winter Storm

Baseline Code for Nov. 2011

- Will include all modules/datasets outlined in this talk.
- Output will be vertical precipitation profile PSD parameters at 250 m resolution, rain rates, and their uncertainties; cloud liquid, water vapor profiles, p, T, surface T & emissivities.
- Ku + microwave (full Ku swath) and Ku + Ka + microwave products.
- Software essentially complete; primarily need:
 - inclusion of PSD parameters estimates, etc.
 - integration of over-land non-raining parameter estimator.
 - tests of PPS compatibility.

At Launch Code for Nov. 2012

- Include GMI high-frequency data, if positive impact.
- Select inter-variable and spatial auto-correlation constraints.
- Select particle scattering tables.
- Partitioning of land surface databases.
- Test compatibility with DPR L2 PRE, VER, CSF, and SRT inputs.
- Test of full satellite algorithm, including TRMM and CRM-generated synthetic data.
- Perform final tests of PPS compatibility.

Synopsis

- Baseline algorithm, ATBD, for PPS will be produced this month (Nov. 2011).
- On track to deliver At-Launch algorithm by Nov. 2012.
- Primary activity in 2012 will be the testing of algorithm options within the basic algorithm architecture that has been established.
- To optimize impact of new GPM channels, need to ensure physics & *a priori* assumptions are realistic. FC data & 1–D testing.
- Final TRMM and synthetic data tests, over a range of environments and storm types, will determine consistency with Level 1 science requirements.
- Will maintain required compatibility with PPS computing environment.

Extras

Test Data Synthesized from Airborne Precipitation Radar-2 (APR-2) Observations

Summary of Synthetic Data Test

LWC estimates

At-Launch Code for Nov. 2012

• Satellite Algorithm Verification

Matsui/Kim GPM Radar/Radiometer Simulator -need to add radiometer simulator component

Cloud-Resolving Model Simulations covering a range of environmental forcing situations over a range of latitudes, land and ocean, have been identified to run.

Tropics: Hurricane/Typhoon SCSMEX KWAJEX LBA Mid-/Higher-Latitude: PRESTORM MC3E Wakasa Bay N. California C3VP LPVEx

from Toshi Matsui

Physics of DPR/GMI Channels Gaseous and Cloud Absorption

Physics of DPR/GMI Channels

Reflectivities

Attenuation

Rain/Snow Backscatter Efficiencies

Assume a priori ensemble, x_i, of desired parameter, x.

standard deviation of x_i (uncertainty).

Simple Examples

• Take a simple 1D example:

 y_{obs} = 4 , with noise σ_{noise} = 0.5

& try to fit model $y(x) = x^2$

Simple Examples

• Take a simple 1D example: $y_{obs} = 4$, with noise $\sigma_{noise} = 0.5$ & try to fit model $y(x) = x^2$ **Ensemble Filtering approach:** update a priori distribution, x_i, using $y_i = y(x_i)$ and then $\mathbf{x}_{i}' - \mathbf{x}_{i} = \sigma_{xy} / (\sigma_{yy} + \sigma_{noise}^{2})$

• (y_{obs} - y_i)

Algorithm Theoretical Basis Generalized Hitschfeld-Bordan Method (applied to Ku-band data only)

• original Hitschfeld-Bordan fast, but reqs. $\mathbf{k} = \alpha \mathbf{Z}^{\beta}$.

$$Z(r) = \frac{Z_{Ku}(r)}{\left[1 - q \int_{0}^{r} \alpha(s) Z_{Ku}^{\beta}(s) ds\right]^{\frac{1}{\beta}}}, \quad q = 0.2 \ \beta \ln(10)$$

- iterative techniques typically slow.
- alternative interative procedure, assuming $N_o(r)$ and approximate approximate β from k-Z relation:

$$Z(r) = \frac{Z_{Ku}(r)}{\left[1 - q \int_{0}^{r} Z_{Ku}^{\beta}(s) \frac{k(Z(s))}{Z^{\beta}(s)} ds\right]^{\frac{1}{\beta}}}$$

Algorithm Theoretical Basis

Generalized Hitschfeld-Bordan Method

procedure is fast
 because iterative
 equation is a close
 approx. to H-B solution.

note procedure
 avoids instability by
 rescaling N_o(r), if needed.

• yields $D_o(r)$, given $N_o(r)$, μ , and Z_{Ku} .

