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Algorithm Theoretical Basis
DPR / GMI Sampling and Resolution
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Algorithm Theoretical Basis - Main Progress/Activities

® new “solver” that improves consistency between radar solutions
at fine resolution and lower-resolution radiometer observations.

e beta version of the satellite algorithm has been distributed to
the team in Sept. 201l.

¢ updated databases for Bayesian estimation of “non-raining”
parameters over ocean and land surfaces.

e combined team members "meet” every month to plan testing of
potential modifications within existing algorithm architecture.

® bottom line: currently we have an algorithm that utilizes

Ku + Ka + microwave over ocean and Ku + Ka over land.
HF microwave wont be utilized until we understand impact.




Algorithm Theoretical Basis
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environment module

locations. Tstes Utoms P> T Qvapo
and q,,,q profiles

e interpolate TB to DPR analysis of {I

e use TB to find “rain possible” 1

Output is field of environmental
parameters over swath at DPR
resolution.

regions.

¢ refrieve environmental parameters
T, TPW, CLWP, U, (emissivity EOF
weight; land) outside of “rain possible”
regions.

e interpolate environmental parameters
into “rain possible” regions.




Algorithm Theoretical Basis

Radar Module / DPR Z,, and Z,, / / GMI TB /

¢ generate ensembles of 1 l
initial qvapor' qcloud' and Nw

profiles at DPR precipitation analysis of {l

environment module
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locations. and q_,,,q profiles

¢ attenuation-correct Z,,, Z,, 1
for water vapor & cloud. radar module

e obtain generalized precip. size distribution: )
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Algorithm Theoretical Basis

GMI convolved
radiances:
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pattern: /}
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Algorithm Theoretical Basis

Radiometer Module /DPRZKuandZKa// GMITB/

e simulate upwelling TB 1 l
for each ensemble member _
analysis of ‘

environment module

l

e convolve simulated TB to
simulate lower-resolution /SRT estimates °f/4> radar module

profile at each precipitating /7 'y 0T g
DPR Foo’rprin’r location. and q,,q Profiles

PIA,, and PIA,,

GMI TB.

e Ensemble Kalman Filter 1

Gvapors Gclouds Nw Profile ensembles using radiometer module
GMI TB, but only at “coincident”
DPR location, where antenna 1

pattern response is greatest. Output is ensemble of

NW’ Do’ U, qvapori qcloud’ U10m
consistent with Z,, ., PIAg, as
TB. Mean(standard deviation) of
ensemble gives best estimate

(uncertainty of estimate).




Test Plan Outline
Sensitivity Studies (ongoing)

e Data: airborne or TRMM Z,, retrieval -> synthetic Z,,, PIAs, TBS

e Tests: basic algorithm mechanics.
sensitivity to input dafta.
sensitivity to a priori assumptions.
sensitivity to particle scattering assumptions.
sensitivity to land surface characterization.
sensitivity to phase fransition, environmental data.

Physics Studies (beginning)

e Data: airborne Ku, Ka, PIAs, TBS, in situ microphysics;
e.g., MC3E dafa.

e Tests: e.g., test consistency of physical models with simultaneous
observations using algorithm framework;
following Liao et al. (2005).
e.g., test in situ-derived Z vs. observed Z.




Testing - Application to Simulated TRMM Data

TMI simulated from Ku
Ku-only 5% bias; 35% rms

Ku+TMI -2% bias; 15% rms

w/positive bias in
initial N,

Ku-only 43% bias; 41% rms
Ku+TMI 18% bias; 14% rms
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Test Plan Outline
Pre-Launch "Validation” Studies (beginning winter 2012)

e Data: TRMM Observations R

CRM-generated GPM Observations PPS GPM
(e.g., tropical MCS, midlatitude squall line, =
synoptic-scale snow, lake effect snow,

high-latitude shallow stratiform).

formats

e Tests: compatibility with PPS
fitting of physical model fo dafta.
refrieved parameters within realistic ranges?
is attenuation correction of Z data reasonable?
how well are rain rates and DSD’s estimated?
(data sensitivity, e.g. Ku vs. Ku + Ka, ancillary data source.
state sensitivity, e.g. land vs. ocean, high vs. low latitude.)

e TRMM Validation: Primary Validation Sites (Kwajalein, Melbourne)
GPM Validation Network (VN Zs and NMQ rain rates)

Post-Launch Validation Studies (beginning 2014)
e Data: GPM Z,, Z, ., PIAs, TBs.

e Tests/Validation: see above; extend to GV in other regimes.




Testing - Application to TRMM Data
Tropical Cyclone Floyd
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Baseline Code for Nov. 2011

e Will include all modules/datasets outlined in this talk.

e Outfput will be vertical precipitation profile PSD parameters
at 250 m resolution, rain rates, and their uncertainties;

cloud liquid, water vapor profiles, p, T, surface T & emissivities.

e Ku + microwave (full Ku swath) and Ku + Ka + microwave products.

e Software essentially complete; primarily need:
- inclusion of PSD parameters estimates, etc.
- infegration of over-land non-raining parameter estimator.
- tests of PPS compatibility.




At Launch Code for Nov. 2012
e Include GMI high-frequency data, if positive impact.

e Select infer-variable and spatial auto-correlation constraints.
e Select particle scattering tables.

e Partitioning of land surface databases.

e Test compatibility with DPR L2 PRE, VER, CSF, and SRT inpufs.

e Test of full satellite algorithm, including TRMM
and CRM-generated synthetic data.

e Perform final tests of PPS compatibility.




Synopsis

Baseline algorithm, ATBD, for PPS will be produced
this month (Nov. 2011).

On track to deliver At-Launch algorithm by Nov. 2012.

Primary activity in 2012 will be the testing of algorithm options
within the basic algorithm architecture that has been established.

To optimize impact of new GPM channels, need to ensure
physics & a priori assumptions are realistic. FC data & 1-D testing.

Final TRMM and synthetic data tests, over a range of environments
and storm types, will determine consistency with Level 1 science
requirements.

Will maintain required compatibility with PPS computing
environment.







Test Data Synthesized from Airborne Precipitation Radar-2 (APR-2)

Observations
Ku Band APR—? Data

—

Assume q, CLW, u, N,, profiles
for each Ku-band profile;
estimate D, profile.
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Create “true” precip.
size distributions:
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Simulate Zo pIAKu/KaI o ___ Simulated Ka Band Data —

and
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TB at 10, 19, 37, 85 GHz,

given T, and

U, (surface emissivity) e e
SCAN INDEX




Summary of Synthetic Data Test

LWC estimates

Ku/Ka + Milcrowav
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At-Launch Code for Nov. 2012
e Satellite Algorithm Verification

Matsui/Kim GPM Radar/Radiometer Simulator
-need to add radiometer simulator component

Cloud-Resolving Model Simulations covering a range of
environmental forcing situations over a range of latitudes,
land and ocean, have been identified to run.

Tropics:
Hurricane/Typhoon
SCSMEX
KWAJEX
LBA

Mid-/Higher-Latitude:
PRESTORM
MC3E
Wakasa Bay
N. California
c3vP
LPVEX

Ku - Case 1




Physics of DPR/GMI Channels
Gaseous and Cloud Absorption
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Physics of DPR/GMI Channels

Reflectivities Attenuation
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Rain/Snow Backscatter Efficiencies
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Ensemble Kalman Filtering Approach

e Assume a priori ensemble, X;, ‘
X.

of desired parameter, X.




Ensemble Kalman Filtering Approach

e Assume a priori ensemble, X;, ‘

of desired parameter, X. X

e Use forward model y = f(x) to

simulate observable y; for each

) €




Ensemble Kalman Filtering Approach

e Assume a priori ensemble, X;, ‘

of desired parameter, X.

e Use forward model y = f(x) to
simulate observable y; for each
X;.

e Update Xx; using y,,s and

covariance o,, of X; and y;:

xi, =X + Oxy / (Oyy + 0‘Znoise) * (yobs - Yi)

e take mean of x. (solution) and

standard deviation of x; (uncertainty).




Ensemble Kalman Filtering Approach

® Assume a priori ensemble, X;,

of desired parameter, X.

e Use forward model y = f(x) to
simulate observable y; for each
X;.

e Update Xx; using y,,s and

covariance o,, of X; and y;:

xi, =X + Oxy / (Oyy + 0‘Znoise) * (yobs - Yi)




Simple Examples

® Take a simple 1D example:

Yous = 4 , With noise 0,4 = 0.5

& try to fit model y(x) = x?




Simple Examples

® Take a simple 1D example:
Yous = 4 , With noise 0,4 = 0.5

& try to fit model y(x) = x?

Ensemble Filtering approach:

update a priori distribution,
X;, using

Yy; =y(X;) and then

) -
Xi =~ X; = Oy / (ny + Gznoise)

* (Yous " Yi)
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Algorithm Theoretical Basis

Generalized Hitschfeld-Bordan Method
(applied to Ku-band data only)

e original Hitschfeld-Bordan fast, but reqs. k = a Z?.

, ¢=02 BIn(10)

e iterative techniques typically slow.

e alternative interative procedure, assuming N, (r) and approximate
approximate f from k-Z relation:




Algorithm Theoretical Basis

Generalized ——
H itSChf&'d‘Bordan due to cloud alfll:i water vapor.
Method :

Set true Z = DPR Z,, .
¢ procedure is fast )

because iterative

y k
Calculate S(r)= f Zg ()
0

equation is a close

i Scale Ny by (&, /( S(};)))#
approx. to H-B solution. ‘ and S(1) by € ason)

® note procedure Z(r) = Zy (0)/(1-qS(r)) "V

avoids instability by

rescaling N,(r), if needed.

® Yields Do(r), given No(r), Retrieve D, from Z and N, .

w, and Z, .




