

3-D Applications of Disdrometer and Polarimetric Radar Measurements to Support GPM Algorithm Development

W. A. Petersen¹, V. N. Bringi², L. D. Carey³, A. Tokay⁴, P. Gatlin⁵, D. Wolff⁴, M. Thurai², M. Wingo³ ¹NASA GSFC/Wallops Flight Facility, Wallops Island, VA, 23337; ²Colorado State University of Alabama-Huntsville, AL; ⁴NASA GSFC, Greenbelt MD; ⁵NASA MSFC, Huntsville, AL.

Polarimetric radar combined with

Allows a referenced extension of

No sensitivity of results to observed winds

Regime similarity in Measured D_{max} vs. D_m

A. Correlation Length Studies: Cold Season strat/conv. vs. MC3E convective event

ARMOR Radar 2-25-09 (Huntsville)

Cf. Thurai, Bringi, Carey, Gatlin Schultz and Petersen, 2011, JHM submitted

<u>Conclusion:</u> We are gaining a) a better understanding of DSD instrument/measurement uncertainty which facilitates a more careful, application of specific instruments; b) identifying systematic DSD parametric behavior; and c) using measurements to describe 3-D precipitation/DSD variability in a host of meteorological regimes.

June 28, 2011 Heavy MCS convective and

stratiform precipitation. Note1-3 km level

variability in N_w and D_0 trends- in similar Z_e .

Acknowledgements: Research funded by Dr. Ramesh Kakar, NASA Precipitation Measurement Mission, Dr. Arthur Hou, NASA GPM Project Scientist, and Dr. Mathew Schwaller, NASA GPM Project Office.

