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1. Introduction

Accurate land surface emissivity (LSE) estimates are critical to the successful
inversion of passive microwave radiometric signatures into instantaneous rainfall
rates. Improving the dynamic estimation of LSE for physically-based retrievals is a
key objective of NASA’s Precipitation Measuring Mission whose core satellite
launch is in 2013. Because land surface emissivity is a function of land surface
state variables such as surface roughness and wetness, the dynamic estimation of
LSE using land surface models (LSM) is linked to the specification of both fixed and
dynamic parameters describing land surface characteristics.

Figure 1: Seasonal
changesin a) dry
season and b) wet
season in northern
Mali and c) spring
and d) fall by Mt
Washington, NH.
Note the surface
roughness changes
due to seasonal
aridity in Mali and,
incvs. d, due to
deciduous trees and
snow in NH.

The long history of SSM/I observations has enabled Prigent, Aires, and
colleagues to estimate surface emissivities from all available SSMI observations
from 1993 to 2008, under clear sky conditions. Their emissivity database was
subjected to a global cluster analysis of 6-channel monthly mean emissivities with
covariances. The analysis resulted in 300 distinct surface classes over land and
over high latitude, coastal, and continental shelf ocean regions in which seasonal
variability is prominent.
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Figure 2: Cluster analysis results: class 1 a) Jan and b) Jul; class 2 c) Jan and d) Jul;
and class 8 e) Jan and f) Jul. Class 1 pertains only to high latitude oceans with
artificial boundaries at the 45° parallels. Although pelagic tropical/sub-tropical
oceans observed by TRMM are excluded from the analysis, coastal and continental
shelf regions of the oceans at all latitudes are analyzed.

2. Approach

Each class map (12 maps/year) was converted into an Arc/Info format grid at
0.188° resolution from 80°N to 80°S and then all surface emissivity cluster classes
for each month were combined into one grid. Some cells were not classifiable (<
5%). These cells and the tropical/subtropical oceans between 45°N-45°S were
assigned “undefined” codes. In Figure 3 are the maps for January and July.
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Figure 3: Surface
emissivity classes for
a) January and b)
July. Note seasonal
changes particularly
in the middle to high
latitudes. In c) are
the counts in each
. emissivity class for
each month. The
; < decrease in count
~ - from 0-300 is not
— monotonic.
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Figure 4: In a) are the
number of times each
gridcells is assigned a
emissivity class. A grid
cell of 7 (yellow) is
mm o«  assigned 7 different
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In b) are emissivity classes 1-50 and c) classes 50-100,
representing 80% and 10%, respectively, of the total
number of gridcells analyzed. Key to b): DO deep ocean,
MCO mid-continental ocean, ShO shallow (coastal)
ocean, and DIW, SIW, EW = deep, shallow, ephemeral
inland water. In a) note the variability in the middle to
- | - high northern latitudes, Antarctica, and the semi-arid
regions of the tropics and sub-tropics. Class changes
C) mainly take place interseasonally, but intraseasonal
changes are common in regions with highly variable
snow cover and sea ice [orange and red areas in a)].
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3. Preliminary Results

In the GPROF ATBD Ver 1.0 (12/2010), it is proposed to reproduce a global self-
similarity classification for each location/month with a goal of 15-25 classes. In
this analysis, we looked to see if standard climate classifications had any value in
grouping emissivity classes. Two standard classifications were tested vs. the
monthly emissivity maps. These were Koeppen-Geiger (Rubel and Kottek 2010)
and Bailey’s Ecoregions (Bailey 1995, 1998) , tested for spatial overlap and month-
to-month stability. The overlap was determined using the Arc/Info COMBINE
function. This utility assesses how much a series (2—50) of grids overlaps spatially
by finding the common sets of gridcell values. It is essentially a spatially-
distributed form of clustering based on shared values.

Figure 5: Bailey’s
Ecoregions of the
Continents. Unlike
Koeppen-Geiger’s
climate regimes,
this classification
includes, is based
on vegetation
cover in addition
to climate drivers
affecting seasonal
temperature and
humidity changes.
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