TMPA and GPCP 1DD in the Depicted as **Extreme Precipitation**

George J. Huffman^{1,2,4}, Robert F. Adler^{1,3}, David T. Bolvin^{1,2}, Eric J. Nelkin^{1,2} 1: NASA/GSFC Mesoscale Atmospheric Processes Laboratory 2: Science Systems and Applications, Inc. 3: Univ. of Maryland College Park/ESSIC **₩ 8 8 7**

george.j.huffman@nasa.gov http://precip.gsfc.nasa.gov

6.

dependence As well, 1DD provides information at high latitudes Seasonal behavior is a key part of the climate signal The globe is broken into regions for easier viewing

1. Introduction

of the metrics

set limitations

(TMPA)

extremes

precipitation products

- GPCP One-Degree Daily (1DD)

There is also a scale mismatch

Neither data set is specifically designed for

- TMPA is averaged to UTC days, since that

is the conventional minimum period for

extremes, and matches the 1DD time

TMPA is computed at both 0.25° and 1°

resolution for information about scale

satellite data sets in order to

It is interesting to compute extremes in

- gain an understanding of the climatology

- gain an understanding of the satellite data

2. TRMM Multi-satellite Precipitation Analysis (TMPA)

3-hr 0.25° grid, 50°N-S

Microwave precip: - intercalibrate, combine IR precip: calibrate with microwave

The precipitation group in the NASA/GSFC MAPL is responsible for two high-resolution Combined microwave/IR: IR fills gaps in microwave TRMM Multi-satellite Precipitation Analysis

Final - accumulate combined 3-hr precip for the month weighted combo. with gauge analysis

rescale 3-hr precip to sum to the monthly satgauge combination ersion faded out

3. One-Degree Daily (1DD)

1-day, 1° grid, 90°N-S 40°N-S - Threshold-Matched Precip Index (TMPI) month of coincident GPROF-SSMI precip, geo-IR Tb data to set precip fraction (at 1°

resolution) --> local IR Tb threshold · local conditional rate from GPCP monthly Like GPI with IR threshold, single conditional rate varying by month, location Outside 40°N-S: - daily TOVS/AIRS precip occurrence scaled

to TMPI occurrence at 40°N,S daily TOVS/AIRS rates rescaled to sum to GPCP monthly locally

Final: - local linear fade from TMPI to rescaled TOVS/AIRS precip by day, 40-50°

Instantoneous geo-R Ieo-R Ieo-R Instan Dally Allec

4. Data Sources

A diverse, changing set of input

5. Climate-oriented Indices

Acknowledge CCI/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) concept of "core indices"

Chose to compute

SSM(1F1

AMSR-E

AMSU-8 N1

AMSU-8 N1

MHE N1

-

GPCP IR Histograms

Ravg Avg. daily precip (=PTOT/365)
Rfrac Avg. fraction of days with precip (> 0.5 mm/d)

R95p 95th-percentile precip rate

- CDD Avg. annual maximum length of dry spell (<1 mm/d) CWD Avg. annual maximum length of wet spell

(>1 mm/d)Record is too short to compute sophisticated

metrics! Note the paradox of "climate" variables depending

on fine-scale estimates "extremes" easily contaminated by analysis

artifacts - R95p is computed because it is well-correlated to 99th percentile and maximum values, and is more stable

- Introduce a dryness index: f2mm Avg. fraction of days with precip ≤ 2 mm/d
- rough lower limit of agriculturally relevant event
- less sensitive to analysis artifacts than CDD

	Eastern Hemisphere	Pacific	Americas and Atlantic
Results – Seasonal Ravg imal scale dependence orithm similarities iouthern Ocean minimum DJF, maximum JJA spaceted summer monsoon cycle in S. Asia reak in ITC2 of C. America JJA-SON ouble Pac. ITC2 MAM orithm differences asmania, New Zealand much wetter in 1DD JJA-SON taggonia and offshore wetter in 1DD JJA-SON w-precip artifact off Newfoundland in TMPA	Annuil DJF MAK SON 3042 0 25' 3042 0 25' 100 Any Precip (mm/d) 198-2003	Annual O.J.F MAM JAA SON 3B42 0.25*	Atimization D_25 MAR DAX 6001 BB12 0.25'
Results – Seasonal f2mm dearate-strong scale dependence (note Borneo) jorithm similarities southern Ocean minimum MAM, maximum SON-DJF, leads Ravg sastern Indian Ocean has a decent seasonal cycle, unlike Ravg trong seasonal cycle in central Africa, Asian morsoon regions minimum offshore of N.E. Brazil JJA when onshore region has a naximum gorithm differences B842 higher in Southern Ocean Tasmania and New Zealand stick out in 3B42, don't in1DD	Annual DJF MAN JJA SON S842 0.25'	Annual DJF NAM JA SON	MANUAZ COLOR COLOR <t< td=""></t<>
Results – Seasonal R95 ong scale dependence withm eimilarities eaks tend to be in phase with Ravg eaks around Darwin, offshore of S.E. Asia and the Philippines, outhwest of C. America are unlike Ravg outhwest of C. America are unlike Ravg outhmet and the Plate basin, S. America; note seasonal shift in scation orithm differences asmania, New Zealand much wetter in 1DD, as with Ravg DD tends to hipher minima, particularly in subtripical highs igger break across S. Andes in 3B42, except DJF DD has a break at 40°S, less so at 40°N	Annual DJF ULA SUA SON SBI2 0.25' SBI2 0.25' DDF SSE Precip (mml) 1998-2008 0 2 4 0 0 10 100-	Annuel DJF MAM JA SCH 3822 025 3822 025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	360003 DF 044K 304K 304K 300 3 3812 0 25' 3824 1 3824 1 555 Precip (mm/t) 1998-2003 0 20 20 20 10,

Mir Alc - Ta - ea - bi

- d Algo - Ta - N - P - 1

7.

Мо

Alg - 5 - m

r

Alg - 3

8.

Stro

Alg - F

- s k

Algo

- b