
 Goals
• Develop state of the art algorithms for DOWNSCALING, optimal FUSION and

RETRIEVAL of multi-sensor precipitation data via SPARSE REPRESENTATION and
BAYESIAN statistical estimation techniques.

 Motivation:
• As multi-sensor precipitation data will be available routinely from multiple sensors

(TRMM, GPM, NEXRAD, GAUGES, …), the need for a combined high resolution
precipitation product with less uncertainty becomes imperative for hydro-
meteorological applications, while taking into account non-Gaussian statistics of
precipitation due to presence of local extreme rain-cells.

• Operational algorithms for resolution-enhancement (downscaling) in real time need to
be computationally efficient and robust

• Sparsity of precipitation images promises a new class of data-driven retrieval
algorithms which can employ the coincidental DPR and radiometer (GMI) local
information to retrieve more detailed precipitation information over the bands of the
radiometer swath where DPR information is absent.

 Data Set:
• The data set used in this study is populated by near-surface reflectivity images from

two hundred independent storms coincidently observed by TRMM and NEXRAD
precipitation radars. The TRMM-2A25 and NEXRAD (level III) long range reflectivity
products over two TRMM ground validation (GV) sites: Huston, Texas (HSTN) and,
Melbourne, Florida (MELB), were collected on the basis of the TRMM overpass
information provided by the TRMM-GV Office at the Goddard Space Flight Center,
Maryland.

 Fourier andWavelet Domains
• Energy is spread over a relatively wide range of frequencies in the Spectrum of Rainfall

images. Conversely, the distribution of the wavelet coefficients exhibits extended tails
significantly thicker than the Gaussian domain, implying that a large number of these
coefficients are zero or very close to zero (SPARSITY)!

NEXRAD:

Horizontal Resolution: 1 km2

Range:  460 km
Minimum reflectivity detection: 5 dBZ

TRMM:

Horizontal Resolution: 4.5 km2

Minimum reflectivity detection: 17 dBZ

Fig.1 TRMM orbital track (a) and
coincidental NEXRAD (b) and TRMM (c)
observations of a hurricane over HSTN site at
09/13/2008
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 Sparse Inverse Estimator

● A new method for multi-sensor precipitation data fusion is developed in the wavelet domain (Gaussian scale mixture on wavelet trees) which
allows us to integrate different sources of multiscale precipitation data including : (1) Rain-gauge (2) Ground-based and (3) Satellite
precipitation images, while taking into account the intrinsic statistical structure of precipitation images.

● A new downscaling framework is presented via recent development in sparse signal approximation community which shows superior
performance compared to the conventional stochastic models. This estimation framework promises a new class of multi-sensor retrieval
algorithms for multiscale data assimilation methods for estimation of temporal non-linear geophysical processes.
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 Gaussian Scale Mixture (GSM): A Sparse Probability Model for Rainfall Fusion in theWavelet Domain

 Sparsity and Recurrence of Precipitation Patches
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Rainfall Sparsity  and Applications in Multi‐sensor Fusion

Rainfall Sparse Representation  

● A large family of elliptically symmetric density functions with thicker tail than the Gaussian case (e.g., Laplace,
Double exponential) can be generated as a mixture of Gaussian random variables [Andrew and Mallows ,1973;
West, 1987; and Wainwright, 2001].

Sparse Downscaling (SPaD) and Multi‐sensor Retrieval  

Summary of Findings 
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Fig.2 (a) ensemble average Fourier Spectrum of 100 independent storm images over TRMM-GV site in
Melbourne Florida and, (b) the average histogram of the Horizontal wavelet coefficients of the same dataset.
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where, is	ݖ a positive independent scalar random variable, the so called mixing random variable or the multiplier, ࢛ is a zero-mean Gaussian vector
with a given covariance matrix Σ௨	and is		ࢊ the family of Gaussian Scale Mixtures (GSM).

● Given a set of independent observations ࢟	of a GSM random vector	ࢊ ∈ Թ௡ in Gaussian noise ࢟ ൌ ࢊ ൅ ݒ , where ݒ~ࣨሺ0, Σ௩ሻ and assuming a lognormal density 
ࣦࣨ~ݖ ,௭ߤ ௭ߪ as the a priori density function for the multiplier process, the maximum a posterior estimate of ݖ	can be derived as :
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where, ݒ௡ are the components of the vector V ൌ ்ܳܵିଵ࢟ , ܵ	is the square root of the error covariance (i.e. ்ܵܵ ൌ Σ௩) and (Λ,Qሻ	contains the eigenvalues ߣ௡	and eigenvectors of the square matrix 	ܵିଵΣ்ି࢛ܵ. 
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Fig.3 A sample simulation of the GSM using the
log-multiplier, resembles the wavelet coefficients
of the rainfall images
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Fig.4: (Left panel) sketch of the fusion scheme, (middle panel) implementation on a 1D non-Gaussian multiscale process similar to that of observed in rainfall and (right panel), the results of fusion of the coincidental
TRMM-PR with the ground-based NEXRAD base reflectivity for a storm over HSTN on 28 June 1998 at 18:13:00 UTC.

● Rainfall Images are very sparse in the wavelet domain; e.g. using undecimated 1D low-pass 1/2 ൅1,൅1 and high-pass 1/2ሾ൅1,െ1ሿ Haar filters.

● Local neighborhoods (patches) of precipitation images recur within different regions of the same storm or across different storm environments.

Dim: [320,400]; Range: [0,45]
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Fig.6: Recurrence of similar precipitation patches: (a) a sample precipitation reflectivity image over the TRMM (HSTN) GV-site on 1998/06/28 (18:13:00 UTC), (b) regions of high gradient (top 25\% ) used for sampling of

important patches, (c) a probability measure of finding similar patches in a test database and, (d) some sample reflectivity images of the test database.

d)

● Recently Candes and Tao [2006] and Donoho [2006] showed that recovery of a
high-resolution signal from its downsampled version can go beyond Nyquist
frequency, provided that the signal of interest is sparse in an appropriately chosen
basis or say “dictionary”.

● Estimation of a high-resolution signal/image ࢞ ൌ ,ଵݔ ,ଶݔ … , ௠ݔ ் ∈ Թ௠, from its
low-resolution counterpart ࢟ ൌ Թ௡, where ݊ ൑ ݉, can be recast as an inverse
problem, where ܪ ∈ Թ௡ൈ௠		is a degradation operator

● If ࢞ can be well approximated by its projection ௦࢞ ൌ Φࢉ onto a redundant high-
resolution dictionary Φ ∈ Թ௠ൈெ ܯ) ൐ ݉), where the number of non-zero elements
of the coefficients are much smaller than the dimension of ࢞ (Sparsity Prior!),
ࢉ ଴ ≪ ݉ , then:

● A priori sparsity implies that among many solutions of vector ,ࢉ those with minimum
number of non-zero elements are the solutions of interest, obeying the fidelity
constraint,

● This can be solved by iterative numerical algorithms such as the Orthogonal
Matching Pursuit (OMP) by Mallat [1993] or an ݈ଵ-relaxation strategy by Chen and
Donoho (1995).

● Forming the high (Φ) and low-resolution (Ψ) dictionaries from the patches of
precipitation images in a training database of precipitation images, this inverse
estimator can be applied to solve rainfall downscaling problem.
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Where Ψ ൌ HΦ	is the low-resolution dictionary and ࢋᇱ ଶ ൌ ߳′ .
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Fig.5: Evidence on sparsity of precipitation images in the wavelet domain, (a) A storm reflectivity snapshot at the TRMM GV-site in Houston, TX (HSTN) on 1998/11/13 (00:02:00 UTC) and the absolute values of the wavelet

coefficients in the horizontal (H), vertical (V) and diagonal (D) subbands, (b) histogram of the horizontal wavelet coefficients ( ுܹ) and (c) the reconstructed field using the top largest 20% of the wavelet coefficients in

absolute values. The bounded area by the dashed lines in (b) contains 80% of the wavelet coefficients that was set to zero for reconstruction of the reflectivity image, shown in (c).
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Only keeping top 20% of the wavelet coefficients

more than 99.8% of the energy is preserved in the

reconstructed rainfall image

Dim: [29,38]; Range: [0,40]
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Fig.7: Result of the SPaD while the rainfall 

image is included in the dictionaries. The 

MSE is less than 1% of the total energy.   
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ill-posed !

NP-Hard !

Fig.8: Results of the SPaD for downscaling of low-resolution rainfall data from 4,8,16 km in grid spacing 

down to 1x 1 km. 

(a) The downscaled field is unique with reduced estimation error. 

(b) The method is robust to measurement noise. 

(c) The solution is smooth enough and free of the blockiness.
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NEXT STATIONS !
A) Sparse Multisensor Precipitation Retrieval 

B) Multiscale Sparse Data Assimilation 

Dictionaries of coincidental Brightness Temperature 
and Reflectivity may permit recovery of rainfall 
reflectivity outside of the DPR coverage where only 
the GMI is available !  


