

Is TRMM PR V7 better than V6? Evaluation with a Dense Gauge Network

FOV Area-Average Rainfall Rate:

Eyal Amitai^{1,2}, Carl Unkrich³, David C. Goodrich³, Emad Habib⁴, Bryson Thill²

¹NASA GSFC, ²Chapman University, ³USDA/ARS/Southwest Watershed Research Center, ⁴U. of Louisiana at Lafayette

INTRODUCTION MQB Gauge Rain Rate PR Near Surface Rain Rate Classification by Distance from Nadir-line at 0, 5, and 10 min after overpass time V7 The evaluation of rainfall rate (R) estimates from low-orbital satellite V7 VG observations like TRMM's is conventionally performed by comparisons Near-I with other remote sensing products (e.g., ground radar fields). Direct TRMM V7 comparisons with in-situ measurements (e.g., rain gauges) have been limited to rainfall accumulations. Such comparisons are associated with large uncertainties due to satellite temporal sampling errors. Comparisons of instantaneous R fields (spanshots) from satellite and gauge observations have been avoided, as they are associated with ¥ large uncertainties due to volume sampling discrepancies. However, the configuration of the gauge network in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) justifies such comparisons. • 149-km ~10 gauges / PR FOV Sauge (mm/h · 88 weighing rain gauges -The densest gauge network in the PR Scatterplot (upper left panel) of the PR/Gauge rain rate estimates at each PR FOV. All PR FOVs located entirely within the watershed (136) from all 25 rainy overpasses are included. overage area for watersheds > 10 km · 1-min reporting intervals The interpolated gauge rain rate field is based on measurements taken 5-min after the · High degree of temporal synchronization - within seconds overpass time. The FOVs are classified into two groups according to their distance from the satellite nadir-line. In addition to the correlation, the leaend displays the $\Sigma R_{corr} \Delta R_{c}$ from all FOVs combined. Values in parentheses are for V6 This configuration allows generating very-high-temporal-resolution R fields, and obtaining accurate estimates of the area-average R for the entire watershed and for a single TRMM PR field-of-view (FOV). We compare instantaneous R fields (snapshots) from TRMM PR and interpolated gauge R fields 25 rainy PR overpasses, 1999-2010 Time (minute relative to overnass time mainthin to ourse · Interpolated gauge fields resolution: 1 min / 100 m The CCs for different conditional rain cases (left panel) and · Multiquadric biharmonic (MQB) gauge spatial interpolation scheme. upon classification by distance from nadir-line (right panel). Garcia et al. (2008 in Water Resources Research) have evaluated both In addition, left panel displays the $\Sigma R_{PR} / \Sigma R_{G}$ from all FOVs IDW and MQB schemes for WGEW and found MQB superior. combined 66-71 FOV, R_>0 and R · The high-resolution data allows for time/space shifting of the R fields with respect to each other to account for the displacement of the hydrometers Special attention is given to the distance of the watershed from the TRMM sub-satellite track. The closer the watershed is to the nadir-line, SUMMARY the closer the PR observations are to the surface, and thus less affected The WGEW dense gauge network provides a unique opportunity for by evaporation and wind displacement common in this environment assessing rain rate retrievals from remote sensing observations Very good agreement between the PR (NearSurfRain) and the interpolated gauge rain rate fields with high correlation and low bias values, especially for the near-nadir cases (CC>0.9); values this high are typically not observed when comparing remote sensing observation (i.e., satellite vs. ground radar rainfall rate fields) 8 Shifting in time and space is required to obtain highest correlations (no shifting in space is presented here) Preliminary results using V7 indicate improvement: In V7 (vs. V6) the CCs overall are higher (in particular for off-nadir cases) and the bias is reduced. Although the overall PR/G bias remains almost the same, the PR near-nadir underestimation and off-nadir overestimation are Spatial correlation study indicates uncertainties caused by using 10gauge averages apparently don't contribute in any tangible way to the observed differences between PR and the gauge based fields used in this analysis (Amitai et al., 2011) Time (minute relative to overpass time) Amitai E C Unkrich D Goodrich E Habib and B Thill 2011 The 25 overpasses include 136 PR FOVs located entirely inside the watershed: 120 of them Assessing satellite-based rainfall estimates in semi-arid watersheds with rain (PR or G). The figure presents the CCs for the 120 pairs of (PR, G) FOVs (red using the Walnut Gulch gauge network and TRMM-PR. 35th AMS Conf Radar Meteor, Sept 26-30. Pittsburgh. PA curves), and the PR/G average rain rate ratio from all FOVs combined $(\Sigma R_{PR}/\Sigma R_G)$ (blue curves) for every minute during an hour, centered at the overpass time. Each (PR, G) pair represents the PR FOV rain rate and G, the corresponding area average rain rate from all 100-m gauge pixels associate with the same FOV. I.e., PR FOV is simulated by the high resolution gauge field. Acknowledgments Funding for Eyal Amitai is from NASA grant NNX10AK46 (2010-2011) The correlation is high at overpass time, but the peak occurs several minutes after the The correlation is nigh at Oveplass time, but the peak occurs several minutes arise in overpass, which can be explained by the fact that it takes several minutes for the rain drops to reach the gauge from the time they are observed by the PR. During the time of maximum correlation the PR/O bias is ~1.10. for Verifying Satellite Precipitation Estimates and Supporting Satellite Algorithm Development. We wish to thank Robert Meneghini of the

NASA/GSFC for his helpful suggestions.